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We investigate one-dimensional strongly correlated electron models which have 
the resonating-valence-bond state as the exact ground state. The correlation 
functions are evaluated exactly using the transfer matrix method for the 
geometric representations of the valence-bond states. In this method, we only 
treat matrices with small dimensions. This enables us to give analytical results. 
It is shown that the correlation functions decay exponentially with distance. The 
result suggests that there is a finite excitation gap, and that the ground state is 
insulating. Since the corresponding noninteracting systems may be insulating 
or metallic, we can say that the gap originates from strong correlation. The per- 
sistent currents of the present models are also investigated and found to be 
exactly vanishing. 

KEY WORDS: Strongly correlated electron systems; solvable model; correla- 
tion function; Kondo insulator; resonating-valence-bond state; transfer matrix; 
persistent current. 

1. I N T R O D U C T I O N  

St rong ly  i n t e r a c t i n g  e l ec t ron  sys tems  h a v e  been  o n e  o f  the  m o s t  i m p o r t a n t  

subjects  in c o n d e n s e d  m a t t e r  physics.  A l t h o u g h  r i g o r o u s  resul ts  a n d  exac t  

so lu t ions  are  useful,  they  a re  rare.  Recen t ly ,  B r a n d t  a n d  G i e s e k u s  I~l in t ro -  

duced  a m o d e l  o f  s t rong ly  i n t e r ac t i ng  e lec t rons  on  d - d i m e n s i o n a l  (d>~2)  
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perovskite-like lattices in which the exact ground-state wave functions were 
obtained for a certain range of the parameters. Mielke ~21 showed that the 
exact ground state can be obtained in similar models on a general class of 
line graphs. Following the work of Brandt and Giesekus, models in which 
the exact ground state can be obtained were constructed by several 
authors/3-5~ These models are conveniently described by the cell construc- 
tion of Tasaki, ~41 which will be reviewed in Section 2 (also see Appendix A 
and ref. 5). Tasaki ~5~ proved the uniqueness of the ground states in this 
class of models. Not only the ground state, but also the singlet-pair correla- 
tion function in a model on a tree was obtained/4~ Bares and LeC 6J per- 
formed a detailed analysis for one of the models of Strack/3~ They proved 
the uniqueness of the ground state and exactly evaluated the equal-time 
correlation functions by a transfer matrix method. 

It was pointed out [refs. 4 and 6] that the exact ground states have the 
resonating-valence-bond (RVB) structure. ~7'8~ It is the so-called hopping- 
dominated RVB states 19~ which are different from the tunneling-dominated 
RVB states. The latter have been studied intensively in connection with high- 
T,. superconductivity/'~ Tasaki and KohmotC 9~ studied the difference 
of the mechanism that causes the resonance in the hopping-dominated 
RVB states and the tunneling-dominated RVB states. 

In this paper we shall exactly evaluate the equal-time correlation func- 
tions of one-dimensional models (Models A, B, and C) which will be defined 
in Section 4. One of Strack's models which was studied by Bares and Lee 
is called Model B in this paper. We shall use the transfer matrix method 
for the geometric representations of the valence-bond states, ~'3 16-~8~ whic h 
is different from that of Bares and Lee. In one dimension, the extension of 
the formalism to other models which will not be included in this paper is 
cumbersome but essentially straightforward. It is crucial that we do not 
have to treat large matrices as needed in the method of Bares and Lee. (In 
one of the models by Strack, for example, we only treat 3 x 3 transfer 
matrices, while Bares and Lee needed those of 16 x 16.) This enables us to 
give a completely analytical solution with a finite amount of effort. 

It is shown that all the correlation functions decay exponentially with 
distance. The result suggests the existence of a finite excitation gap. It is 
expected that the excitation gap originates from the structure of the ground 
state which is described by a collection of local spin singlets. The filling fac- 
tor of the ground state corresponds to that of a band insulating state or 
metallic one in the noninteracting system. The properties of the ground 
state and the gap are completely different from those in the noninteracting 
system. The existence of the excitation gap is expected to be a general 
feature of this cass of models. In a certain range of parameters, Model B 
includes one of the models by Strack, ~3"6~ where we reproduce the results 
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of Bares and Lee. In a limit of parameters, it corresponds to a kind of 
Kondo lattice regime in the sense that there are one localized electron and 
one conduction electron per unit cell, where the ground state is described 
by a collection of a local singlet between them. The persistent currents ~ 19 23) 
are also calculated and turn out to be vanishing. 

The plan of this paper is as follows: In Section 2 we review the cell 
construction of the models. In Section 3 we describe the geometric 
representation of the correlation functions in arbitrary dimensions. In Sec- 
tion 4 we perform a detailed analysis of the one-dimensional models using 
the method of Section 3. In Section 5 the absence of the persistent currents 
is shown. Section 6 is a summary. The reader interested only in the physical 
results may look at Sections 2 and 6 for general properties of systems in 
one dimension, and then read Sections 4.1.1, 4.1.6, 4.3.1, 4.3.4, 4.4.1, and 
4.4.4 as examples. The results for the correlation functions are shown at the 
end of each subsubsection in Section 4. 

2. CELL CONSTRUCTION AND THE GROUND STATE 

Let us first introduce the solvable models in arbitrary dimension by 
[bllowing the construction in refs. 4 and 5. In the present paper, we only 
consider the translation-invariant lattices. 4 The lattice is constructed from 
identical cells C,, with n = 1, 2 ..... N, where N is the number of cells. The cell 
C,, is a finite set of sites, where each site r e  C,, ( r = l , 2  ..... R, where 5 
R = ]C,, 1) is either a site with infinitely large on-site Coulomb repulsion (a 
U =  Go site or a d-site), which can have at most one electron, or a U =  0 
site (or a p-site), which can have at most two electrons with opposite spins. 

N The full lattice AN ( = 0, ,= i C,,) is constructed by starting from the lattice 
A j = C1 and adding cells C2, C3 ..... CA, successively. When we add a new 
cell C,+ j to the lattice A, ( =  0'/= l C;), we identify some of the sites in 
C,+~ with sites in A,, in a one-to-one manner. We note that a cell is not 
a unit cell in the sense of crystallography. We denote sites in the full lattice 
AN by x ( x =  1, 2 ..... IAN]). A site x may belong to several different cells. 
The correspondence between x (eAN) and r (eC,,) is given by 

x = f ( n ,  r) (2.1) 

where f (n ,  r) depends on the model under consideration. See Fig. 1 for the 
correspondence. 

4 We can construct more generalized models whose lattices are not translation invariant. See 

ref. 5 for such models. 
Throughout the present paper, IS] denotes the number of elements in a set S. 
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CN= {1,2, -.- ,R}  

CN~ 

C2= {1,2, - - - ,R}  

c, , i i i / : / i , /  
AN= 

{1,---, r,.-., R } 

"" l x = f ( n , r  ) 

{1,2,3,4,5, .  . . . . . . . .  ,x, . .-  , IA . I }  

with 

Fig. 1. Tile correspondence between the sites x (e Au) and r (~ C,,). 

For  a cell C, ,  we associate a cell Hamil tonian 

a=T. 1 
(2.2) 

R 

.... = ~ "r~"l~r.~ (2.3) 
r = l  

where 2~r "~ are nonvanishing complex coefficients 6 and are chosen independ- 
ently in each cell. 7 ( In Section 5 we impose the twisted boundary  condit ion 
by making use of  this property.  In Sections 3 and 4 we only consider cases 
where all the cells have the same 2,.. Thus we have translationally invariant 
systems and we drop  the index n in 2~r "~ there.) Here c,.~ and * �9 Cr.,, are the 
annihilation and the creation operators,  respectively, of  an electron at site 
r with spin a =  T, J.- They satisfy the s tandard an t icommuta t ion  relations 

t {c . . . .  c.,..,}=fi,..,.~,,,r and { c ~ . , , , c . [ ~ . } = { c  . . . .  c.,..~.}=O. The projection 
opera tor  which eliminates a double  occupancy on d-sites is 

~ , =  I-[ (1 - n~. rn~. ~) (2.4) 
rECn;u=~ 

where C,,; v= ~ is the set of  U =  oo sites in C, and n~. , --  c,.* ,,c,..,, is the 
number  operator.  This represents the infinitely large on-site Cou lomb  
repulsion. The full Hamil tonian is 

N 

H =  2 H,, (2.5) 

6 When a magnetic field is applied, ).~r "~ are complex. Tile proof of the uniqueness of the 
ground state in ref. 5 holds also in this case. 

7 When a site size x belongs to more than one cell, 2!.! '~ can be chosen independently in each 
cell. 
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We rewrite this Hami l ton ian  into the s tandard  form. F r o m  the 
identities (~, 51 

c ~ . ~ , c ~ . ~ = - ~ , c ~ , ~ c ~ . ~ ,  for r ~ s  

t _ (2.6) cr , . .~ , ,c~ . . -~ , , (1- -n . . l - -n~ . l )~  , for r~C,,:u=~_ 
t _ C,..a~,Cr.a--~,(l--nr.a)~n for reC,,:v=o 

where C,,; v=0 is the set of  U = 0  sites in C,,, the cell Hami l ton ian  (2.2) is 

n,,= E 2 xs (x,)'"' , 
~ T , I  ,'. s e G ,  

r o , l  r~:slECn) 

(n) * ] ( n ) ~ t  C 
( / ] ' r  ) ha" ~r  . . . . . . .  

+ Z }-" 2 2'"'1-' t --r  Cr, cfCr, cr 
o ' = L 1  r e C . : u =  :~ 

~=t . t  ,- ~ c,,: v=-,_ 

(.i t } '~n = e ,  E . -  ~" ~, t..sc..~.cs. ~ 
o = T , l  r. s E C n  

(2.7) 

where 

((,v/")* ,l!/" 
t(,."~ = ~2 12~"' I ' 

for r r s 

for r = s a n d r ,  s e C , , : u =  

for r = s and r, s ~ C,,: c~= 0 

(2.8) 

E , =  Y' 2 ,~,.~("~l 2 
r E  C n 

(2.9) 

F rom (2.5), we have 

(2.10) 

where 

N 

t,..,, = ~ t,..l")s 

N 

Eo = -  ~ E .  
n =  1 

for x = f ( n ,  r), y = f ( n , s )  (2.11) 

(2.12) 
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and 

N 

: ~=  H ~, (2.13) 
I I =  l 

It was shown in refs. 4 and 5 that for the electron number 2N the 
unique ground state of the Hamiltonian (2.5) or (2.10) has zero energy and 
is given by 

N 

I~o.s.> = ~  FI H ~,*,..Io> (2.14) 
a =  T..[. , = 1  

where ]0) is the vacuum state. As we will see in (3.3), we have a single 
valence bond in each cell. Therefore, the filling of the ground state is 1/N~,, 
where N,, is the number of sites in the unit cell. In Sections 4 and 5 we use 
the second term in (2.10) as the Hamiltonian and denote it by Hs. The 
unique ground state of the Hamiltonian Hs is given by (2.14) with the 
energy Eo in (2.12). 

3. GEOMETRIC REPRESENTATION OF THE 
CORRELATION FUNCTIONS 

We describe the geometric representation of the norm of the ground 
state and the correlation functions which was formulated by Tasaki ~24~ 
in arbitrary dimensions. The geometric representation of the norm is 
described in refs. 4, 9, and 25 for the lattice composed of d-sites only. Here, 
we have the lattice with both p- and d-sites. The ground state (2.14) can be 
written 

N N 

,..,.~,..Tc.,..~10>=~ H Z * * L.,b,...,. 105 (3.1) 
n ~ I r, s E Cn II = 1 r ~< s E C,, 

where 

~ , t  t C t . t  f o r  r 4 : s  bt ~'" Tc"" i + "' Tc r' 1 
r ,  ,r - ~  t , t ~cr. Tc.,..l for r = s  

and 

h r .  s - -  
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The operator b'r, .,. is the creation operator of the valence bond (i.e., a singlet 
pair) between sites r and s if r :~ s. It creates a doubly occupied site if r - -s .  
They obey the commutation relations 

[b  . . . .  b,. ,,] t * =[b,..,.,b~.,,] b,. =[b . . . . . . . .  ]=0 (3.2) 

where r, s, t, and u are different sites. This operator satisfies the relation 
i" __ i" b,.,.,.-b,..,, and the ground state (3.1) is a hopping-dominated RVB state 

according to the terminology of ref. 9. It is different from the tunneling- 
dominated RVB states, m 161 

Now we rewrite the ground state (3.1) in a convenient form for 
diagrammatic evaluations of the norm and the correlation functions. The 
diagrammatic method was first introduced by Ruiner c261 and PaulingJ "-7~ 
We denote a valence bond by {x, y} and a doubly occupied site by {x, x}, 
which is regarded as a self-closed bond (Fig. 2). Since a self-closed bond is 
actually a doubly occupied site, it is allowed only at p-sites. Let a valence- 
bond configuration V be a set of N bonds constructed by choosing a single 
bond from each cell. We show examples in Figs. 3a and 3b. The bonds do 
not share a d-site, since it can have at most one electron. A p-site is shared 
by at most two bonds. In this way, the projection ~' defined by (2.4) and 
(2.13) is automatically taken into account. We denote by )"" the set of all 
the possible valence-bond configurations. The ground state (3.1) is 
rearranged, and written as 

Y', I - I  * * IO> (3.3) = 2.,. ,,b ....... 
VE~," Ix.y} E V 

x y <a'ol x . . . . . .  
b ,l*o> = = - = 

(a) (b) 

 xL*0) x x 

(c) (d) 
Fig. 2. Diagrammatic representation of the valence bonds. The solid (broken) line represents 
a valence bond in the ket (bra). We distinguish four kinds of bonds and call them (a) a non- 
closed ket-bond, (b) a nonclosed bra-bond, (c) a self-closed ket-bond, and (d) a self-closed 
bra-bond. A d-site with U =  oo is denoted by a solid circle, and a p-site with U = 0 is denoted 
by an open circle. 



1140 Yamanaka e t  al .  
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..... ..... "i . ~ 7 " . . ~  ~ "'" . . . . . .  '~ %~ " ..... /i ".i ~ .. . . . . .  ( ' d ~ : ~  " ..'i i ..... .......... ".5o~ ~ 'i ..... .,: 

o:~::~- ~' . -:: ' : .~.::- i , - -::  -..:i.o 
"-.." " " : . - "  "-: '". '""... '  "'~" ""... '  ".:.'"':":::* .. : .-' " ' . " i ' " " ) . ' "  

..... ~ ....... o, ~ .,,;;i",(g~....'~i\ ...-;::i ............. i q \  
( C )  '~: '*:i~:~~*:~;+c:~'~':*::~+:~"-~ -'-~'~ �9 : : . -~ . . . . . .  : : . . - . . . . - : : . . : : . . . : . . . . . .  ~ - . : - . . . . : : .  ~. . -  . . . . . .  . , ,~.~.=,..- 

" ' . $ J I  '..".L."" "..!.... ..!.i..." *~:~ '..'..; .." "0" 0 0 ~ "0" 

Fig. 3. Examples of valence-bond configurations (a) V, (b) V', and (c) their overlap V w  V'. 
The lattice is constructed from a cell with one d-site and four p-sites. The p-sites in adjacent 
ceils actually comprise a single p-site. The thin broken lines represent hoppings of electrons. 
The graph Vu V' is factorized into four connected subgraphs (d)-(g). 

3.1. Norm of the Ground State 

From (3.3), the norm of  the ground state is 

( ~ o . s l ~ o s . )  = Y~ Z ,~(v'),t*(v)(01 lr] b,..,,, ]-[ b~.yl0) 
v ~  V ' ~ ' -  { x ' . y ' } ~ V '  { x , y } E V  

(3.4) 

where 2(V) = I-ll.,-,~,} ~ v2.,-.y. Let us consider a graph Vw V' in the expec- 
tation value. We call a bond which belongs to V' a bra-bond and one 
which belongs to V a ket-bond (Fig. 2). We only consider graphs V u  V' in 
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which the numbers of bra-bonds and ket-bonds are equal at every site. (An 
example is shown in Fig. 3c.) Otherwise, the expectation value is vanishing, 
since the numbers of the creation and annihilation operators are different 
at the site. 

The graph Vu V' can be decomposed into connected subgraphs, since 
the operators b.v.y, and b.*,. y commute [see (3.2)]. An example is shown in 
Figs. 3d-3g. We denote the number of the subgraphs by n ( V u  V'). This 
decomposition is written 

n[ I / ~  V') 

Vuv '=  Z U;uU', (3.5) 
i = 1  

where Ui c V and U'~ c V'. 
t By noting that b,., ..... and b,.:, commute with each other for distinct x, 

y, x', and y' [see (3.2)], we find that the expectation value in (3.4) can be 
factorized into parts corresponding to connected subgraphs. Thus, we have 

I 
n( V~ V'} 

(o~.s.loo.s.>= Z I-[ z(~',),~*(u3 
V , V ' e I  '. i = l  

x (01 I1 by.~ I-[ b*~. ,, IO)l (3.6) 
{ x ' , y ' }  E u~ {x,y} �9 ui  J 

We note that each Ui, U't in (3.6) depends on the whole of configurations 
V, V', and Vw V'. 

It sometimes happens that two bra-bonds and two ket-bonds are con- 
nected to a single p-site in a connected subgraph U~ w U'i. For our calcula- 
tions, it is convenient to eliminate such sites. This is done by using the 

* * - b *  * (see Fig. 4a). Examples of eliminations of identity b ..... b,. : = ,, yb.,..: 
such sites are shown diagrammatically in Figs. 4b-4d. The procedure in 
Fig. 4b generates a minus sign. We assign the sign to the nonclosed bond. 
We shall always apply this procedure hereafter and it should be understood 
implicitly. After this procedure, the subgraph U/u U'; may be decomposed 
into several graphs. We denote the number of the graphs by n( U~ w U'i). 
The decompo.sition is unique and is written 

n~ Ui ~ U, ~) 

U,w U~-~ 2 Wjw W} (3.7) 
j = l  

The arrow indicates that Wj, Vr are not necessarily subsets of Ui w U'i. We 
only have three kinds of graphs Wjw Wj: self-closed bonds (Fig. 4e), 
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(a) O 0 0 ~ -- Cr (~ ~ 

x y z x y z 

(b) 

(c) 

% 9 
- *.~ 

0 

." I 1 % 
o" - ~ o  6 

(d) 

(e) (0 (g) 

, . . . .  o f'~,~ 

! - i 
? 
i .' .' ! 

Fig. 4. (a) Diagrammatic representation of the identity bt,..ybt.,..:= -bt,..,.b*,.._. Examples of 
the elimination of a p-site with four bonds (b) and (c), which exhaust all the cases. For (b), 
we apply the identity (a) once. For (c), we apply it two times. (d) Example of the decomposi- 
tion of a connected graph to subgraphs. We have self-closed bonds (e), a degenerate loop (f), 
and a nondegenerate loop (g) after the procedure. 

degenera te  loops ,  which  cons is t  of  a pai r  o f  b o n d s  (Fig.  4f), and  n o n -  
degenera te  loops ,  which  cons is t  of  an  even n u m b e r  of  d i s t inc t  b o n d s  
(Fig.  4g). We call the g r a p h  W/w W~ a loop.  F r o m  the d e c o m p o s i t i o n  (3.7), 
we have  

n( Ui w U~) 

<Ol FI ~.,.,..,, FI ' b., ,.10> = 1-[ (-1)"'J~,? (3.8) 
Ix'. y'} ~ u~ Ix. y } ~ u, j = I 

where  m j  is the n u m b e r  of  the p rocedures  s h o w n  in Fig. 4b  a n d  

wj= <ol 1-I b,.,.,,, I-I b~.,, I0> (3.9) 
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We call it the weight. The value is classified by 

2( - 1 ) l j 1 2  - I 

if Wj u W~ is a pair of the 

self-closed bonds (Fig. 4e) 

if Wj w IV) is a degenerate loop (Fig. 4f) 

if Wjw W)is a nondegenerate loop (Fig. 4g) 

(3.10) 

where /j is the number of bonds in the j t h  nondegenerate loop. These 
weights are derived in Appendix B. Now the norm of the ground state (3.6) 
is written 

Iv++[ ' '++ 1t <~o.s.l~o.s.>= Z . ,H, H ~(w;.)~*/w,.)l-1),+wj 
V, V ' E I  j = l  

(3.11) 

3.2. Spin Corre la t ion  Funct ion  

The spin correlation function is given by 

(q~o.s.I s:.,+s;. I,t,o.s.> 
(s:.,.s:.,.) = (q~c.s. i qS6.s. > (3.12) 

-p 
where S.~. = (c.*,.. Tc,.. t--c.,. ~c,.. ~)/2 is the z component of the spin operator 
on site x. From (3.3), the numerator is written 

l / E :  Y " V '  E I " 

x 0,( )+:++. I,,'.,.'[I1~ v' b ,,, ,,, . . 1-[ b* h0) it, t, 

{ u ,  t,} ~ V 

(3.13) 

n(  V ~  V ' )  - -  1 

V w  V ' =  U ' "~w U'c'-'Y~ + 
i = l  

U i w  U'i (3.14) 

From the commutation relations (3.2) and [S--,.,b ..... ] = [ S ] . , b ~ . , , ] = 0 ,  
where x, u, and v are different sites, we can decompose the graph V w  V'  

into connected subgraphs Uiw U'i as we did in Section 3.1. We only need 
to consider the case where sites x and y belong to a single subgraph 
denoted as U+-"-">w U'c'-'YL Otherwise, the expectation value in (3.13) is 
vanishing. The decomposition is written 
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After the elimination of  p-sites with four nonclosed bonds,  we only need to 
consider the case where sites x and y belong to a single loop (Fig. 5a) 
denoted as Wt"'Y~u W '('':'~. Otherwise, the expectation value in (3.13) is 
vanishing. We have 

n( U (x" Y) u U '(x" Y)) -- I 

V u  V'--, W(-",.")u W'(.",>') + ~. Wsu W' j 
j = l  

n( V u  V ' )  --  l / n ( U i  U U;)  \ 

+ T, ( ~ wjuw~.) (3.15) 
i ~ l  x j l 

�9 ,I "11' 

= W( ' - "~u  W'" ' - "~+ ~ W s u  Wj (3.16) 
j= l  

We note that each Wj, Wj in the second term of (3.15) depends on the 
graphs U c''-''~, U '~-''-''~, and Uc"'."~u U '~ ....... ~, and those in the third term 
depend on the graphs Ui, U'i, and Ui u U'~. We denote the total number  of  
the loops W j u  W} in the second and the third terms of  (3.15) by ~'ffw. 

. . . .  . e  !' | | (~X ? Y  X y 

t i  . i | l 

(a) (b) (c) (d) (e) 

x y x y ! 

?x. , 
(g) (h) (i) 

Fig. 5. (a) Example of a graph where sites x and y belong to a single subgraph in the 
geometric representation of the spin correlation function. A square represents the spin 
operator S=. (b, c) Type (i) configurations and (d, e) type (ii) configurations in the geometric 
representation of the correlation function (c h,,ct.). A pentagon represents the operator c.t,. ,,. 
(f) Diagrammatic representation of the identity c].. ,,bt,. >. = - c.,t.. ,b t.,.. (g, h ) Examples of the 
elimination of the type (ii) configuration. (i) Example of a line. 
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Their  labelings in (3.16) were rearranged. The weight for the loop 
W("'-") w W '(''>') is 

W(X, y) = (01 ( I-I b-,.,,)S~S",,., . . [ I  b:,+ IO),,. 
1: ' ,  ,,.'} e W 'l-', .v) {z. w} �9 W(X.Y ) 

= ( _ i )a(x,y, 1 <Of VI b=,..., VI 
{: ' ,  w'} e W'(.' v {z, u.} e |V-" v 

= ( - 1 )a(.,- ,,) I w 

b: +. ., Io) 

(3.17) 

where d(x, y) is the number  of  bonds  between x and y along the loop and 
w is given by (3.10). A derivat ion is shown in Appendix C. F rom (3.8), 
(3.9), (3.16), and (3.17), we obtain 

f n( Vu V') 
( r  S:.,.S~,., Iq)G.S. ) ---- }-" ( - -1 )  '( ....... ')-4 1--[ 2(U'i) 2*(Ui) 

V. V 'e l"  i=l  

•  [ I  b,.,.,., 1-[ b+.,..,. 10)} (3.18) 
Ix ' ,  y ' l  e u; Ix ,  y} e u, 

n( W l  V" ) = 2 ( - l)a("'Y) �88 
V, V 'e l"  i= 

x [I 2(Wj) 2*(Wj)(-1)",wj (3.19) 
j = l  

where the weight for the loop W = ....... )w W' ' " is included in the product.  

1 3.3. Correlation Function (Cx.oCy.,,) 
We evaluate the correlat ion function defined by 

(r c.,-.,,c+,..~ I~'o.s.) 
( c"" ~162 ~) = ( r ~o.~.) 

From (3.3), the numera to r  is written 

( CG.s. I '+ c,.,,,,. ~ leo . s )  = ~ 5". ,~(v') 2*(v) 
ge 1" V'e "/ 

x o,( 
{ .  t } e v '  

(3.20) 

1-[ b,',,~, IO) 
{u. v} �9 v" 

(3.21) 
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We decompose the graph V w  V' into connected subgraphs using the com- 
mutation relations (3.2) and [c . . . .  b.,..,.] [c:.~,b.*,.,.,,] '* * b , , , . ]  = �9 = = [ ~  . . . . . .  0 ,  

where z # x  and _- :/= y, and obtain {3.14). After the elimination of p-sites 
with four nonclosed bonds, we only need to consider the case where sites 
x and 3, belong to a single graph and they satisfy one of the following four 
conditions: (i) site x (y) with one nonclosed ket (bra)-bond, and (ii) site 
x (3') with one nonclosed bra (ket)-bond and one self-closed ket (bra)- 
bond. (See Figs. 5b-5e, where a site with a pentagon represents the 
operator c,.., or c,*,.~.) Otherwise, the expectation value is vanishing. It is 
convenient to eliminate type (ii) sites using the identity -'* b* [- A" rr A" I' 

-c . , . . ,b  ........ which is represented diagrammatically in Fig. 5f. The results 
are shown in Figs. 4g and 4h. After this procedure, the graph 
W~""-'"~w W '~'''y~ in (3.14) is a line where bra-bond and ket-bond are 
placed alternately and x' and y' are always at the end of the line (Fig. 4i). 
The weight is 

�9 ( ) , ,  H w(.v', v ' )  = <01 1-[ b,,.,., c.,., ~ ,., . . . .  
{u ' .  v '} �9 W " ' " '  {u ,  v} �9 W ~' ' ' '1  

= ( - 1)/Iv''''v2 (3.22) 

where I(x', y') is the number of the bonds (see Appendix D). Thus we have 

< ~o.s . I  c.,. ~c,*. ~ Iq'o.s.> 

= ~ {2( U ''''-'~) 2*( U I''-''~) 
V. V ' E  1 

{z'. ,,.'} �9 u".'. "~ {z. ..} �9 u ~ - ' . '  

n (  u ~,  I "' ) - I [ 

• I-1 [ ;4 U;) )~*(U,) 
t ' = l  

x ( 0 [  I-I b,, .... I-[ b:.,, [0)]  } (3.23) 
{. ' .  ,"I ~ u~ { . .  vl �9 u, 

= ~, {2 (W'"" . ' "~ )2*(W '' ,.' )(_i)/i.,-'.r 
I ' , I , " � 9  

x 2(Wj.) 2*( Wfl( - 1 )"'J wj (3.24) 
j = l  

where m is the number of the procedures shown in Fig. 5f for the subgraph 
S ( x ' y l  k..) S t l x ' y )  
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3.4. Density Correlation Function 

We first evaluate the expectation value of the number operator 

<eo.s. In ..... leo.s,> 
(n  ..... ) = (3.25) 

< q%,s. I'Po.s, > 

From (3.3), the numerator  is written 

<,Po.~.In ..... I,~.~.)= ~ 5-'. ; ~ ( v ' ) ) ~ * ( v )  

n . . . . .  n 
{ , ' .  r '}  ~ v '  {u. v} ~ v 

We only need to consider the graph Vu  V', which contains the site x. 
Otherwise, the expectation value is vanishing. A similar calculation to that 
in Section 3.2 leads to 

nl V ~  V') -- 1 

Vu  V'= U~")w U"") + y '  Uiw U'i 
i = l  

It( U Ix)  V U ' t x )  ) - -  | 

-~ W ~'~ u W '('~ + y.  Wj w W~ 
j = l  

+ E E 
i=~ j = l  

�9 I "11" 

= W ' ' ) u  W ' " ~ +  Y'. W j u  W~ (3.27) 
j = l  

where U ' )  u U ' ' ~  is a subgraph with the site x, and W ~') u W '~'~ is a loop 
with the site x after the elimination of p-sites with four nonclosed bonds. 
We distinguish two kinds of loops: (i) a site x with self-closed bonds, and 
(ii) a site x with one nonclosed bra-bond and one nonclosed ket-bond (see 
Figs. 6a and 6b, where a site with a circle represents the number operator).  
[We note that a subgraph U~"~u U "-') with four nonclosed bonds at the 
site x is decomposed into type (ii) graph and loops.] The weight is 

w(x)=<Ol ( H b:, ,,.,),, ..... I1 
{z'. . " t  ~ I1",..I {z. . '} e 11"~.') 

{i , i ,  
= - 1 )  m')/z-I for (ii) 

b_*_.,. 10) 

(3.28) 
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(a) (b) 
x ~ , . = .  �9 

"~:~ • 1.  i 

(c) (d) (e) (f) 

x0.. o x! .... ! 
~ ~ g : l  

, ~  ~ 4 ~ , , . . . .  

Fig. 6. (a) Type (i) configuration and (b) type (ii) configuration in the expectation value of 
the number operator. (c) Type (i) configuration, (d) type (ii) configuration, (e) type (iii) con- 
figuration, and (f) type (iv) configuration in the geometric representation of the density 
correlation function. 

where I(x) is the number of bonds in the graph. A derivation is given in 
Appendix E. From (3.8), (3.9), (3.27), and (3.28), we obtain 

<~G.S.I n,.~ I'~G.S.> 

= ~ {2(U'<"~),a.*(U I'~) 
V. I ' E  Y" 

~o,( ~ +.,,+),, ..... ~ +:+,o> 
I:', . " I  ~ Lm,~ I:. .'} ~ u ' . ' ~  

is( VL.., V")  --  I g 

x ] I  [ ,~(s',) , I*(s,)  
i = I  

~<o, n ~,,,,,, n <,,,,o>]} 
{,,'. v'} ~ u; {.. v} ~ u~ 

= Y .  {a(w;,.,,)x*(w).,,)(-l),,,w(x) 
V. V ' e  ~ '  

�9 I " I I "  

x i-[ ~(w}) ~.*( ~.)( - 11"" w.; 
. j =  I 

The density correlation function is 

(an.,. &.,,) = ( (n , . -  (n.,.))(n.,,- (n,,))) 

(3.29) 

(3.30) 

= { n.,.n,.> - { n.,.> { n , . >  
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= <~o.s.I n.,.n:, lr <~o.s.I n,. I~G.s.>(a~G.s.I n:, lr 
< aS~.s.I aSo.s.> (< ~o.s.I ~o.D/'-  

[ D ( x , y ; a )  ] 
= 4  (~o.s.l~o.s.> (n"'~) (n"~ (3.31) 

where 

J q5 t t . ct t l ~ . s . )  (3.32) D(x,  y; o) = 5(_ ~.s.I cx.,,c,, ,,c.,..,cx.~+c,.,~,c,," _<, ,, _,,c.,_.,, 

From (3.3), we have 

D ( x , y ; a ) = ~ , ,  ~. 2(V ' ) ) .* (V)(01(  1--[ b,,,.v,) 
V E t  V ' ~ I "  { u ' ,  t , '} ~ V '  

t C t x �89 ..... c,, ~c.[  ~ c.t,., ,7 + c,. off,.  _~c.,,. _ . . . . . .  ) 

x I-[ b,*,,,,10) 
{ u , v } e V  

(3.33) 

We only need to consider the graph V w  V' which contains the sites x 
and y. Otherwise, the expectation value is vanishing. A similar calculation 
to that in Section 3.2 leads to (3.16), where W~"'-"~u W 'c'':'~ is a loop (or 
two loops) which contain(s) the sites x and y. We classify the loops 
WC"'."~w W '1''-''~ as (i) sites x and y each belongs to two distinct self-closed 
bonds, (ii) site x (y) belongs to the loop and site y (x) belongs to the 
self-closed bonds, (iii) sites x and y each belongs to two distinct loops, and 
(iv) sites x and y belong to a single graph (see Figs. 6c-6f). Otherwise, the 
expectation value is vanishing. The weight is 

w(x, y; a) 

1 t t c t  t x ~(c.,..~c,, ~cv.~c,. , + c , .  ~c . . . .  c.,. ~) . . . ,  . ,  - o -  v 

1 ) l l , v ' -  - l x ( - 1 ) l ,~ . , ,v , -  - I 

1 )t ., ,'1/2-1/2 

I-[ b,*,. ,, 10) (3.34) 
/ u ,  v} �9 H ,'c.~. y~ 

for (i) 

for (ii) when the site 

x belongs to the loop (3.35) 

for (iii) 

for (iv) 

822/84 /5-6-18  
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where l(x) and l(x, y) are the numbers of bonds. A derivation is given in 
Appendix F. From (3.8), (3.9), and (3.35), we obtain 

D(x, y; ~r) 

= ~ {~(U'"'"')2*(U' ')(OI ( ....... 1--[ b:,. ,,.,) 
V,  V '  e "1 - { : ' .  w '  } e U "  x rl  

1 t t C t  t x _~(c.,.. ~c,, ~,c,,.,,c.,. ~, + c,. ~c . . . .  c,.. ~ [ I  . . ,  . ,  - - a  y ,  . 

{: .  w} e U c',-b'~ 

n{V~ V')--I l- 

• ]-1 [,t(s',) x*(u,) 
i = 1  

{u' .  e'} E w~ 1,,. ,,1 ~ ~v, 

= ~ {2(W 'c ....... I) 2*( W ' '  " )(--1)m w(x, y; a) 
I I ,  V '  e t " 

+ I "11' " }  

x 1-[ 2(I4,".;.) 2"( Wj)( - 1 )"" wj 
j = l  

b~, ,, IO> 

(3.36) 

(3.37) 

3.5. Singlet-Pair Correlation Function 

The singlet-pair correlation function is given by 

b.,.,,b ..... I~c.s.) , < ~o.s.I t 
<b,. ,,b ..... > -  <~o.s.l~o.s.  > 

(3.38) 

From (3.3), we obtain 

b x. yb ..... I(P~.s.) 

= Y, ~ , ~ / v ' ) x * i v )  
V'e Y V ' e  Y 

x<OI b,., y, t b,..,. [0) 
{x',. e v" { .v .y}  E v 

{ n ( V v  V ' ~  {x .  Yl  u {u, v } )  

= E I-I x(uj),~*(vk 
IZ, V ' e  Y - i = 1  

(3.39) 
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= ~ c -,,tv<~v'<~l.,-l_i>,iuI 
V,  V '  e t " k i = I 

x 1-[ 2(W}) 2*( Wj)( - 1)"'J wj (3.40) 
j = |  

where V and V' satisfy the condition that the graph Vu V ' u  {x, y} w 
{u, v} consists of connected subgraphs. 

4. EXPLICIT CALCULATIONS OF THE 
CORRELATION FUNCTIONS 

The results of Sections 2 and 3 are valid in any dimensions. At the 
moment, however, their practical use is limited to models in one dimension 
in which the transfer matrix method can be applied. In this section, the 
equal-time correlation functions are evaluated exactly for one-dimensional 
models. We shall show the analytical procedures for obtaining them for 
Model A defined below in Section 4.1, illustrating the method in detail. The 
results are shown for a system size N and in the thermodynamic limit. For 
Models B and C, we only show the results in the thermodynamic limit, t28~ 

4.1. Model A 

4.1.1. H a m i l t o n i a n .  Let us consider a lattice constructed from 
cells with three sites. We have two lattices which satisfy the uniqueness 
condition of ref. 5. One of them, which we call Model A (the other is called 
Model B; see Section 4.3), is constructed from a cell with two d-sites and 
one p-site (Fig. 7a). Note that a cell is not a unit cell. A unit cell is com- 
posed of a d-site and a p-site. In the models constructed by the cell con- 
struction, Model A is the simplest one for the following two reasons. The 
structure of the lattice is the simplest. (We can construct lattices from cells 
with two sites. The exact ground state, however, contains two electrons per 
site and is fully filled.) The calculation of the correlation function is easier 
than that of Model B. 

The cell Hamiltonian (2.2) is obtained by choosing 

3 
d p 

_IA)__ Z "~rCr, a==--- 21C~[.a-1- ~2C2. a"i- 23C3. a ('1"11. a - -  

r = l  

in (2.3) and setting 23= 1 without loss of generality (see Fig. 7a for the 
intracell index). Here c a.. (c~ ~) is the annihilation operator on a d (p)-site. 
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(a) 
r--1 3 2 

(b) 
r= l r=3 r=2 r=l 

n n - 1  n = l  

(c) N+I N 2 1 

Fig. 7. Model A. (a) A cell composed of two d-sites (U= co) and one p-site (U = 0). (b) The 
lattice constructed from the cell with cell labelings. (c) The same lattice as (b) drawn 
differently with unit cell labelings. 

The full Hamil tonian is obtained by identifying site 1 in the (n - 1 )th cell 
with site 2 in the n th  cell (Fig. 7b). The Hamil tonian is 

f N d 

e,= T, I n = l  

21 a t  p _ ~  , , a t  , p  +h.c . )  - -  C n+l ,  aCn, o. ~2~n ,o" -n ,o  - 

e a  c a* r a -4- PC p t  p ..1_ ̂ d ~d t  ~d ~ G] - n - n .  cr-n ,a  - ~  n, oCn, - - r  ) 
(4.1) 

where the on-site potentials are e{ I =  -22] ,_  e,--d-- _ 2 ( 2 ~ + 2 2 )  (2 ~ n  ~<N), 
e~+l  = --22~, and e p = - 1. A unit cell is labeled by n. The ground  state 
is 

N 

I~g.s.> =~'  ]-I ]-I ~..~-'A>t IO> (4.2) 
n = ,  a = t , l  

N 

= I7 l-I 
n = l  a = T . l  

(~1 dT dt _~ c p t )  c..~.+;~2c,,§ . . . . . . .  10> (4.3) 

which is a half-filled state. 

4.1.2. Band St ructure  in the Single-Electron Problem. 
Before studying the g round  state (4.3), we investigate the corresponding 
noninteract ing system. We consider the system with an even number  of  
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unit cells under the periodic boundary condition c a + ~ =  c a. A one-particle 
state can be written 

I~F> = ~  ~ ~o~c~,Yr I0> (4.4) 
n at=p,d 

where q~, are complex coefficients. The single-electron Schr6dinger equa- 
tion H [ ~ r )  = E I ~ r ) ,  where E is the energy eigenvalue, corresponding to 
the Hamiltonian (4.1) is 

a _  d + d 2(2 2+2~_) d E~o,,- - 2122(cP,,_ l cP,,+ l ) -  (p, ,-  21 ~o,,P_ I - 22cP~+ I 

Ecp~ = a a - 21 ~P,,_ i - 2z~0,+ 1 -q )~  
(4.5) 

From the Fourier transformation cp, ~ = (1 /x /~)  Zk eik"~0 k," where 

2n 4n  N / 2  - 1 
k = 0 ,  __+-~, ___~ ..... ___2n N , n (4.6) 

the Schr6dinger equation in the momentum space is 

Ecpa= 2(2,2 ,  cos k + 2~ + ~ )  a - -  - ~ 0 k  - -  ( 2 1  "]-22 e - i k )  q)fr 
(4.7) 

&o~ = - (2~ + 22e '~) ~o~ - q~ 

The eigenenergies are 

e ~  = - �89 cos  k +  22~ + 2 ~  + 1 

-T- [ (2,~., 22 cos k + 22~ + 22~)2-  4(22 + 2'_;)1 '/'- } (4.8) 

where - ,  + are the band indexes with - (resp. + ) corresponding to the 
+ (resp. - )  sign. The energy gap between two bands is A = [ (2 2 ~2 2 -1 )  
(1 + 4 2 ~ - 2 2 , 2 2 + 4 2 ~ ) ]  v-'. When 2212_,-1 =0 ,  the gap closes at k = n .  

(See Fig. 8.) 
In the ground state (4.3) there are 2N electrons. Since there are 2N 

sites in the lattice, the electron number corresponds to fullfilling of the 
lower band. Therefore, the ground state of the noninteracting system is 
insulating for 22122 - 1 :~ 0. It is metallic when 2212_, - 1 = 0. 

4.1.3. Norm of the Ground State. Before calculating the 
correlation functions, we evaluate the norm of the ground state (4.3), since 
the state is not normalized. For  the sake of convenience, we draw the lat- 
tice shown in Fig. 7b and Fig. 7c. The ground state admits the geometric 
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F i g .  8. 
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The dispersion relations E+ and E_. (a) The parameters are 21 =22= 1. (b) The 
parameters are 21 = 2_, = l/x/~. 

representation (3.3), where an example of the valence-bond configuration V 
is shown in Fig. 9a. The geometric representation of the norm is (3.6), 
where an example of the graph V u  V' is shown in Fig. 9b. We first 
evaluate the contribution from a graph Vu  V'. It can be decomposed into 
the subgraphs Uiu  U'i [ i - -  1, 2 ..... n( V u  V')]. No loop extends over more 
than two cells and there is no p-site with four bonds, since the sites which 
are identified in the cell construction are d-sites. We do not need the proce- 
dures shown in Fig. 4. Therefore, the graph U~ u U'~ cannot be decomposed 
further and we find n(Uiw U'A = 1 in (3.7) and mj=O in (3.11). The cells 
with the graph are classified into four kinds (Figs. 9g-9j). Consider the 
graph shown in Fig. 9g. From (3.10), the weight for the degenerate loop is 
2 and the contribution from 2(U'A 2*(UA in (3.11) is 2~. Therefore, the 
contribution from the graph is 22~. For other graphs see the caption of 
Figs. 9g-9j. 

The sum over the graph Vw V' in (3.6) is equivalent to that over all 
the combinations of the above four kinds of cells under the restriction 
that a d-site has at most two valence bonds. (The restriction means, for 
example, that the identification of the right d-site in Fig. 9g with the left 
d-site in Fig. 9i is forbidden.) Hereafter we shall always take into account 
the restriction and it should be understood implicitly. To evaluate the sum 
we use the transfer matrix method. We have to distinguish two cases due 
to the restriction. Let A,, and B,, be the quantity defined by the right-hand 
side of (3.6) on the lattice A,. For  A,,  the sum is taken over all the com- 
bination of the cells shown in Figs. 9g-9j with the restriction that the nth 
cell is represented by Fig. 9g or 9h. For B,,  the sum is taken as for A, with 
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'K. : .~: : : / : .7 . . . . . : . , :y ' . : . : / . : :  7-, ...:-:.-:.: 

q~.--...e~=~m.----:~:----..er162 :----.o 

ql,----..a~,~=~. :--- #:----..eL.............~..----:~:---:~:--.-.~.......~. :----,O 

.a~. :--.-.~:...j:...-. .~.~. .......o:.--#.....:~:..... .a~. 

o. 8 e ,e8  
, = , . .  . - . . . , ,  . . . ~  - - . . , H , -  - - - - , ~  . . - . . , = , :  - - - - : :  - - - - , 

( ~ 1  'o fI'~ V V V ~ o f~ ~ 

~ - . . Q :  .. J.l~l,....A .---A-----A-.-.u.~i~,--.-O: . - - - 0  
(fl ~ "~ 8 '~'~'-V~' "#8 '~ 

�9 �9 ~ ,~.~..o .:.i. .... 
t: (~g) (I~'%(h) '~ (J) 

".:;~ '7:." ~ . '  ':~;49, ~i~ 
(k) f"(~l}(1) (m) (n) 

(q) ~ ( r )  ~(s) ~ ( t )  

(o) (p) 
=-0 .... ~ ]  

Fig. 9. Examples of configurations of valence bonds in the geometric representation for 
(a) the ground state, (b) the norm of the ground state, (c) the expectation value of the number 
operator n~,, (d) the density correlation function for p-sites, (e) the correlation functions 

c p c pt~, and (13 the correlation function (c~,,,c]~). (g)-(j) Configurations of the valence i . a - j ~  / "  

bonds on a cell in the geometric representation of the norm. The weights including the con- 
, 2 , 22~. tributions from 2(U) 2(U') are (g) 2).;, (h) 1, (i) 2).12r,, and (j) Configurations of the 

valence bonds on the ith cell in the geometric representation for (k-m) ( n f , )  and (n-p) 
(n~ ~), The weights including the contributions from 2(U) 2(U') are (k)).~, (I} I, (m) 2~, (n) 
),~_, (o) 2~2_~, and (p) 2~. Configurations of the valence bonds on (q) the nth cell 
(i + 1 ~< n <~ j -  1) in the geometric representation for (c~ ,c~.*~), and those on (r, s) the i th cell 
and (t, u) the j th  cell for ~ = p ,  and on (v) the ith cell and (w) the ( j - l ) t h  cell for 0c=d. 
The contributions from 2(U) ).(U') are (q) 2122, (r) 21, (s) 212 ~, (t) 22, (u) 2~22, (v) 212.,, 
and (w) 2~2,. 
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the restriction that the n th cell is represented by Fig. 9c or 9d. They are 
represented diagrammatically as 

A,, = (4.9) 

B , =  ~ (4.10) 

We note that the norm in the system size N is 

((i0G.S. [ qSG.S. ) = A N + B  N (4.11 ) 

Given A,_  ~ and B,_  ~, we can form A,, and B, by attaching them to the 
nth cell. Let us consider A,, first. When the nth cell is represented by 
Fig. 9g, we can attach A,,_ l and cannot attach B,,_ ~. When the nth cell is 
represented by Fig. 9h, we can attach A , _  ~ or B,_  a to it. Thus we have the 
recursion relation 

= 22_,'-A,,_ l +A,,_j  +B,,_~ (4.12) 

For B,, a similar calculation leads to 

B,, = + "o" 

' 9 " ' ' (4.13) = 227A,,- l + - 2 i B , -  ] + 22i2_;A,,- i 

They are conveniently written in matrix form as 

B,, \ B , , _ I / '  227 + 22~2~ 227 

The initial vector is I = (A 0, Bo ) r= (1 ,  0) r, since any cell in Fig. 9g-9j is 
allowed as the first cell. To obtain the quantity (4.11 ), we choose the final 
vector F _= (AN, B u ) r =  ( 1, 1 )7". Since the transfer matrix is not symmetric, 
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it is convenient to diagonalize it using the right and left eigenvectors. The 
matrix can be diagonalized as 

T,,= RDR- I  = L - I D L  (4.15) 

where 

D_~.(O 1 0) ,  R=(RII R12~, (L,I Li2 ~ 
e2 \R~, R22 j L = \L2,  Lz2J (4.16) 

where e~ are the eigenvalues of T.,  e1=(22~+22~+1+co l ) /2 ,  and 
4 4 ) 1/2. e2 (22~+222+1- r  with co1=(42,+42,_+42~+42_~+1 They 

satisfy e l > e 2 > 0  for 2, # 0  and 22#0.  We choose the left eigenvectors 
LI = ( L I , ,  L,2) r and L2=(L,_I, L22) T corresponding to the eigenvalues e, 
and e2, respectively, and the right eigenvectors R I = ( R I j , R , ~ )  r and 
R2 = (RI,_, R2z) r. Using the diagonal matrix C = LR, we obtain 

T,,= RDLC -1 (4.17) 

where 

c-- (0' 5 ,4,8, 
From these quantities, the norm of the ground state in the system size N 
is found to be 

< 0  A 0 A \ = Fr'['N... T ,TII  G.S. G.S./ 
= FTRDNLC-II 

_ 1 + 22~ + 22~ +42~2~, +c~ e N 
2~o i 

1 + 22~ + 222 +4)1.~2~--(o I eU (4.19) 
2col 

where we used the relation L C - ' R  = I, where I is the identity matrix. In the 
thermodynamic limit, the eigenvalue e I dominates and we have 

OA OA \ 1+22~+22~+4Z~2~+ ,o ,  
< G.S. G.S./ = - - (4.20) 

2co I 
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4.1.4. Expectation Value of the Number Operator. We 
calculate the occupation on a p-site ( n ~ , ) .  The geometric representation 
of the expectation value is (3.29), where an example of the graph V u  V' is 
shown in Fig. 9c. We do not need the procedures shown in Fig. 4, because 
there is no site with four bonds. Therefore, we find n( U~u U'j)= 1 in (3.27) 
and m j = 0  in (3.30). In the representation, the operator n,.P.~ modifies the 
weight associated with the graph which contains the ith cell. Therefore, we 
replace the transfer matrix T,. by N I p~, which is a matrix associated with the 
operator n~.P,. The expectation value can be written 

(~"~s. n,.P~I~gs)=FTTN.. �9 . . . .  T,+,NCf'Ti_,  .T, !  (4.21) 

We derive the matrix N~/'~. We have three kinds of graphs on the ith cell 
(Figs. 9k-9m). Let A~/'~ and B~i :~ be the quantity defined by the right-hand 
side of (3.29) on the lattice Ai. The restriction for the sum is that the ith 
cell is represented either by Fig. 9k or (1) for A~f ~ and by (m) for B~ p~. They 
are represented diagrammatically as 

A{Pli = (4.92) 

BliP~ = ~ (4.23) 

and the recursion relations are 

= " : � 9  + ' r  
= 2 2 A i _  I-F A i _  I + B i_  I 

= A i A i _  I q . -2 fBi_  I 

(4.24) 

(4.25) 

From (3.28) the loop with operator n;.o has weight 1. It is written as 

B{?,j=N,/,, A,_, N,/p,= 1+2~_ 1 (4.26) 
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From (4.51), (4.52), (4.195, and (4.26), we have 

FTTN-iN~P~T i-I I 
(n/t' > = FrTNI  

FTRDN-iLC-I NitPl RD i-1 LC -I1 

F T R D N C - I L I  

C1 - -  C,_(e,/el)i_ C3(e2/el )N-i + C4(e2/el)N 
�89 [(1 + 22~5(1 + 22-'_,) + c o , ]  

- [(1 + 22~5(1 + 22-'_,) - {o I ](e2/e l)u} 

(4.275 

where 

C1 = (e, - 22~)(el - 22~)(el - 2~ - 22) 

Cz = (e, - 22_~)(e_, - 22~)(el e_, - 2~el - 2~e2)/ez 

Cs = (et - 22~)(e2 - 22_~)(el e2 - 2~el - 2~ee)/el 

C4 = (e2 - 22~)(e_, - 22_~)(e2 - 22~ - 22~) 

in the system size N. In the thermodynamic  limit, N, i, N - i - - *  co, we 
obtain 

1 ( 1 + 1  
( " f ' )  = 2  c-771 ) (4.28) 

Since there are two electrons in a unit cell, from (4.28) we have the occupa- 
tion on a d-site 

We can also obtain the same quant i ty  from the geometric representat ion of 
the expectat ion value. F rom the graphs shown in Figs. 9n-9p  we have the 
matrix associated with the opera tor  nda: 

(;-2 ~ Nildl ---- , , , ,  (4.30) 
212~ 2i  

which will be used to obtain the density correlat ion function. 
The results are shown in Figs. 10a and 10b for ~ = p  and d, respec- 

tively. We consider the following cases: (i) 21,22>>1 (21 =22) ;  (ii5 I,hl, 



1 1 6 0  Y a m a n a k a  e t  al.  

1 

0.8 

0.6 
m 

o .  ~ 

0.4 

0.2 

0"5~ ~ ~'2 = Xl 

~.2 = 4 

I 

/ 

la/ 

I I I I 

tJL2 = 4 

2 - 

0 I I P 0 
0 1 2 3 4 5 0 1 2 3 4 5 

Xl k l  

Fig. 10. Occupat ion on (a) the p-site and (b) the d-site for ) .2=0.1, 0.5, 1, 2, and 4 (solid 
lines) and 22= ).l (broken line). 

1221 < 1 (2t =22); and (iii) 12]1 < 1, 22>> 1. For (i), on-site potentials satisfy 
the relation ca<cp. There is almost one electron per site. For (ii), on-site 
potentials satisfy the relation ep <e a, ed--Ep >> 2)22. The d-sites are almost 
empty. The p-sites are almost doubly occupied. For (iii), the system 
decouples to a collection of pairs of p- and d-sites. 

4.1.5. Two-Point  Correlation Functions. We calculate the 
density correlation function for the p-site. We first evaluate the first term in 
(3.31). The geometric representation of the expectation value is (3.36), 
where an example of the graph Vw V' is shown in Fig. 9d. We do not need 
the procedures shown in Fig. 4, because there is no site with four bonds. 
Therefore, we find /1(Uit, J U'i)= 1 in (3.15) and m j = 0  in (3.37). In the 
representation, the operators modify the weight associated with the graph 
which contains cells between the cells i and j. From the derivation of the 
matrix N(i v~, the expectation value is 

N(P)T ' . .Ti+I  N~P)T T)I (4.31) D(x, y ; a ) = F T T N . . . T j + ] . . j  ' j - I  i i - ) " "  
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F r o m  (4.26) a n d  (4.31), the first t e rm in the r igh t -hand  side of  ( 3 . 3 1 )  i s  

D(x, y; or) 

< ~o.s. I ~o.s. > 
FTT,vTN_,... Tj +, N)mTj_]... T,+, N ' f 'T ,_ , . . .  r ,  I 

- F T T N I  

=[Cl_C~(e2~i+c.~(e~J_c4(e2~J-i 
- \ e ~ /  - \ e l /  \ e l /  

i 
+ C5 (e~'~ N-j+i - C6 ( a ~  N- j  + C 7  (e '~  - C8 ( e ' Y  

\ e l /  \ e~ /  \ e l~  \ e l l  J 

where  

x [( I  + 22])(I +22~) +o9,] 

' 

- [ ( 1  +22~) (1  + 2 2 2 ) - o 9 , ]  \ e , /  ; /  (4.32) 

C, = (e, - 22~)(e, - 22~)01.{ + 2~ - e , )  

C2 = (e, - 22~)(e2 - 22~)(2~ + 22 - e , ) (2~e ,  + 2~e2 - e, e2)/e 2 

C 3 = ( e  I 22~)(e,  2 2 , , - -  - - 2 ) ] - 2 ) ( , ~  ' + J - g - - e z ) ( 2 5 e l  +2~ez-e lea) /e2  

C4 = (e, - 22~)(e, - 222)(2~e , + 2~ez - e ,  e2) 

x (el e2 - 22et - 22 ez)/(el e2) 

Cs = (ez - 2).~)(e2 - 22~)(2~e, + 2yea - e, e2) 

x (e,  e 2 --  2~e, - 22e2)/(e,  e2) 

"~ 9 2 2 "~ C6 ( e l - 2 2 ~ ) ( e 2 - 2 2 2 ) ( 2 i + 2 2 - e l ) ( 2 1 e ]  + 2 ; e 2 - e l e 2 ) / e l  

C7 = (el - 22~)(e2 - 22~)(2~ + 2_~ - e2)().~ et + 22e_, - e~ e2)/e t 

= ~ 222)(21 + 2 2 _ e 2  ) C8 (e 2 _ 22y)(e 2 _ 2 2 9 

in the sys tem size N. 
I J - i l  finite, we have 

D ( x , y ; a )  = [ 1 ( 1 +  ) ] 2  

(q0c.s. [ qSG.S.) [ 2  \o91 1 

( ~-,i-j, . . . .  _ e_, 2i22-[1 + 2 ( 2 ~ + 2 2 - + 2 4 + 2 ~ ) ]  
9 2 

' , e l /  e7o9~ 
(4.33) 

In  the t h e r m o d y n a m i c  limit N - j ,  i ~ ~ keeping 
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From (4.28), the first term in the right-hand side cancels out with the last 
term in (3.31). We obtain 

(,,,.*',,~') - -  ( n ~ ' > ( n ~ ' >  = - -  e_ ,  , , -  
\ e  j /  e~ro~ 

(4.34) 

For the d-site, a similar calculation leads to 

-l,-JI 42~2~ 

(et + e2) cot 
(4.35) 

The density correlation functions take negative values and decay exponen- 
tially with distance. We show the results in Figs. l la and l ib.  For the 
parameter region (i) identified at the end of Section 4.1.4, the density 
correlation between p-sites is enhanced and that between d-sites is sup- 
pressed. For (ii) and (iii), they are suppressed. 

Since we have no nondegenerate loop, the spin correlation functions 
(S ,S~)  are vanishing for I j - i l  ~>2. Since we have no self-closed bond at 
the sites where the adjacent cells are identified, (b~jbk.~) is vanishing for 
Ik- il/> I .  

We evaluate the correlation function ( . r  r* ci.,,.c).,,). The geometric 
representation of the expectation value is (3.23), where an example of the 
graph Vu  V' is shown in Fig. 9e. We do not need the procedures shown 
in Fig. 4, because there is no site with four bonds. Therefore, we find 
n(Uiw U'~)=I in (3.15) and m j = 0  in (3.24). In the representation, the 
operators modify the weight associated with the graph(s) which contains 
the cells between i and j. Let the transfer matrix associated with the 
operator c~, p, (cj.,) be G~ "Ira (G~'tm). We need a new matrix G,, for the nth 
cell ( i+  1 ~< n ~ < j - I ) .  From these matrices the expectation value can be 
written 

c ." cUt')=FTTN...Tj+IG~'tt"Gj_ �9 G~+ G ~ ' I P ~ T ,  Ttl (4.36) 
t ,  C r - l , a ~  I " "  1 " - - I  " ' "  

We derive the matrices. We first consider the matrix G,. It is reduced to 
a number, because we have only one kind of graph (a line) on the nth cell 
( i+  1 ~<n~<j-1)  (Fig. 9q). Let G,, be the quantity defined by a sum. The 
sum is taken over Vu  V' on the lattice A, such that the graph consists of 
loops shown in Figs. 9g-9j on the kth  cell ( l ~ < k ~ < i - 1 )  and the line 
shown in Fig. 9q on the nth cell (i<~n<~j). A line with 217 bonds is on n 
cells, since a cell has two valence bonds. The weight for the line is ( -  1 )'. 
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We assign - 1  to each n cells. In this way, the weight (3.22) is automati- 
cally taken into account. They are represented diagrammatically as 

G, ,  = 

= --2122G,,_ I (4.37) 

We have 

G,,= -212~ (4.38) 

For the matrix _~GtPl, let Gi R'tp~. be the quantity defined by a sum. The sum 
is taken over Vw V' on the lattice At such that the graph consists of loops 
shown in Figs. 9g-9j on the kth cell (1 ~<k <~ i -  l) and the graph shown in 
Fig. 9r or 9s on the ith cell. The recursion relation is 

= 2 1 A i _  I + JqBi_  1 + 21J.~_Ai_) (4.39) 

and is written 

Bj i ' 
G f " e '  =(2~ +2,2~,  2,) (4.40) 

For G~'. IP~, let A} m and oiB(P~ be the quantity defined by the right-hand side 
of (3.23) on the lattice Aj. The sum is taken over the graph Vu  V' such 
that the graph consists of loops shown in Figs. 9g-gj on the k th cell 
(1 ~< k ~< i -  1) and the graph shown in Fig. 9q on the / th  cell (i ~ l ~ j ) .  The 



Strongly Correlated Electron Models 1165 

restr ict ion for the s um is tha t  the j t h  cell is represented by either Fig. 9t for 
AJ p) or  9u for _jR(. pl. The  recurs ion  relat ions are 

and  are wri t ten  

Q . . . . . . . . .  

= 2z Gj_ l (4.41) 

= ,a.?,a.2 G j _ ,  ( 4 . 4 2 )  

A(p)\ L (  ) / "~'" \ J ~ -  GL,(p)Gj_ j ,, G.s 'v =t2~i ,_  ) (4.43) <. . , / -  

From (4.19), (4.36), (4.38), (4.40), and  (4.43) we ob ta in  

,p .p* 
( r i.a(-j, a )  

F T T n - J G ~ . ( m G J - i  I G R . ( m T i -  l I 

F T T N I  

= -- (--2120_)J - i  

Cl( 1~el ) J - i -  t _ C,_(e2/e I )i- t _ C3(e2/el )n-a + C4(e2/et )n 
x (4.44) 

COl{ [(1 + 2~.~)(1 +2,~.~) + ( 0 , ]  
--  [(1 + 22~)(1 + 22-'_,) --  co, ] ( e2 /e , )n}  

where 

C, = (e, - 22~)(e t - 2 t ) (e  , - 22_~)(e, - 2~)/e, 

C,  (e I 2~)(e I 22~)(e,  2 2 j - i + t  _ =  -- _ _ _--  2)-t ) (e2--  22)/et 

9 9 "~ , - ) ]2~]Dj_ i+ 1 
C 3 = ( e l - - 2 ) . 7 ) ( e l - - 2 _ ; ) ( e , - - - 2 7 ) ( e , -  ~-~z,/-i 

O4 = (e, --  22~)(el --  2~)(e, --  22_~)(e~ -- 2,'_-)/e~ - i + '  

in the sys tem size N. In  the t h e r m o d y n a m i c  limit N - j ,  i---, oo keeping 
I J - i l  finite, we ob ta in  

c"  "* ( 2 , 2 _ . ' ~ - I ' - J i ( 2 2 ~ + l + ( o i ) ( 2 ; t ~ + l + r . o , )  
( i ' ~ q ' ~ ) = - -  et / 4e ia) l  (4.45) 

822/84/5-6-19 
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Next, we evaluate the correlation function ( c  a c d*'~ We show an i ,  cr j ,  < r . '  

example of the graph V w  V' in Fig. 9t". (We have only one kind of line.) 
Using the graph of the ends of the line (Figs. 9v and 9w), we find for the 
matrices in (4.36) 

G~" Ida= ( --2, 22, 0), 

From these matrices we obtain 

(') G ~"d' = - ~  (4.46) 

<c,,oc;':> =•  ( 
~" " col \ e t  / 

(4.47) 

The correlation functions decay exponentially with the oscillating sign. 
For a finite lattice under open boundary condition, the system is not 

translational invariant. In the thermodynamic limit, however, by the 
Fourier transformation of the correlation function (c i ,~c~> ,  we obtain 
the momentum distribution function c6~ for e =p,  d 

where f ~ '  = (n~ ~. .> and 

<nk.,~>= =f~=~F(k, r )+fol~'~ (4.48) 

2r[cos k - r] 
F(k, I")= 1 + r 2 - 2 r  cos k (4.49) 

where 

f ' P ' =  - (22~ + 1 -t- (o,)(22~ + 1 +co,)/4etco,  

f ,a~= 1/coj. r =  --.a.i 22/e I 

The results are shown in Figs. 12. There is no singularity in (n~..~>. For 
the parameter range (i) in Section 4.1.4, the momentum distribution for the 
d-site is completely flat, while that for the p-site has a broad peak around 
k = 0. For (ii), the momentum distribution for the p-site is almost unity for 
every k and is completely flat, while that for the d-site is almost zero. For 
(iii), both of them are completely flat. 

4.1.6. Discussion. All the correlation functions under consideration 
decay exponentially with distance. These results suggest the existence of a 
finite excitation gap. Therefore, it is expected that the state is not metallic but 
rather insulating. The correlation lengths are given by ~,,,, = [ l n ( e , / e l ) ] - '  
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for the density correlation functions and ~cc=[ln(2122)/el)]  -~ for the 
correlation functions = P* (c~,,,cj.o) (Fig. 13). The correlation lengths of the 
correlation between p-sites and that between d-sites are the same. The spin 
correlation functions vanish for [ j - i l  >/2. The singlet-pair correlation 
functions vanish for any I J - i [ .  

We consider the limit 12~ 1, 12,_1 ~ 1 (21 =22). We obtain ~ ..... ~cc=0. 
The density correlation functions for the nearest neighbor sites vanish. The 
ground state is described by a collection of the decoupled p-sites which are 
doubly occupied. 

We consider the limit 2j, )~2 >> 1 ()1.~ = 22). The correlation length con- 
verges to a finite value: 

[ [ (  ' )1' r l n \ 2 + x / ~ j j  and r In 4 + 2 x / ~  

The density correlation function for the nearest neighbor p-sites remains 
finite, while that for the nearest neighbor d-sites vanishes. Since there is 
almost one electron per site, the correlation between d-sites is suppressed 
and that between p-sites is enhanced. 

For f2~ I '~ 1 and )-2 > 1 the correlations are suppressed. This is because 
the system decouples to a collection of pairs of p- and d-sites. 

The ground state (4.3) is a half-filling state. In the noninteracting 
system, the filling factor corresponds to that of a metallic state at 
221/~2 - -  1 = 0 and that of a band insulator for 22 ~ 22 - 1 ~ 0. Therefore, we 

1 

0.8 
t , -  

_~0.6 
o 

o / 

0.2 

0 
0 2 4 6 8 10 

Fig. 13. Correlation length of (a) the correlation function (ci.,,c~,,) and (b) the density 
correlation function for 2~ = 22. 
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have a metal-insulator transition when 21, 22 are fixed to satisfy 
2212z-1  = 0, and the on-site Coulomb interaction U on d-sites is varied 
from 0 to oo. In the noninteracting system, the correlation length, which is 
proportional to t.he inverse of the energy gap, takes a finite value for 1211, 
1221 ~ 1, it diverges when 22122-1  =0,  and it goes to zero for 21,22>> 1. 
These properties are completely different from those of the ground state 
(4.3). 

4.2. Notation of the Transfer Matrices 

In order to present the calculations in latter models efficiently, we fix 
some notations. From the derivation in Section (4.1.3), the norm of the 
ground state can be generally written 

( ~G.S. I ~6 .S . )  = F T T N  "'" TzTI I (4.50) 

where the matrices depend on the model under consideration. 
We describe the expectation value of a local operator C~ by using the 

transfer matrices. In the geometric representation, when there is an 
operator Ci the weight associated with the graph which contains the ith cell 
is modified. Therefore, we replace the transfer matrix T,. by O`., which is a 
matrix associated with the operator CO,.. The expectation value is written 

( (PG.S. [ CÒ . [ tJSG.S.) = F T T N  "'" T`.+ 1 0 i T i -  i " '" Ti I (4.51) 

When COl is the number operator lh~.~, where c t=d  (p) for a p (d)-site, let 
the corresponding matrix be 

O`.= NI ~ (4.52) 

For the two-point correlation function (CO~ CO~), the weight associated 
with the graph which contains the cells between i and j is modified. Let Pk 
be the transfer matrix between the sites i +  1 and j -  1, and O~ (O~) be the 
matrix associated with the operator CO~ (CO~). We have 

< r I co ~ %." Ir = FTTNTN- ,  "'" T j+,  O L Pj_, -. �9 P`.+, O~T,_ ,  ... T, ! 

(4.53) 

We use the following notations: 

Pk=Tk ,  O ~ = N  ~"~..̀  , O L = N  x~=~ 

Pk=Sk ,  O f = S ~  ''~'', o L = s L . '  =' 

for D(i, j; a) in (3.32) 

for spin correlation 
function 
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P,=H,, O,.a=H~ '`r', O~ = H~' ,rl for singlet-pair 
correlation function 

Pk=Gk, O/a=G~ ' ' | ,  O~ = G~" '~| for correlation 
function ( c,. ~cf . )  (4.54) 

For the singlet-pair correlation function (b~jbk,~), we distinguish the 
following four cases by y: 

(i) ), = p sites i an d j are p-sites and i = j 

(ii) y=pp 

(iii) y=pd 

sites i a n d j  are p-sites and i r  

site i is p-site and si tej  is d-site 
(4.55) 

(iv) y = dd sites i and j are d-sites 

We can evaluate multipoint correlation functions for operators which 
are constructed from fermion operators. The numerator of the correlation 
function is obtained by the insertion of the transfer matrices which are 
associated with the operators. 

4.3. Model  B 

4.3.1. H a m i l t o n i a n .  Model B is constructed from a cell with two 
p-sites and one d-site (Fig. 14a). This is one of the models of Strack ~3) 
which was studied by Bares and Lee. |6~ The cell Hamiltonian (2.2) is 
obtained by choosing 

3 
(B) p d 
. . . .  = E 2rCr, ` 7 ~  2 1 C f ,  o + 22C2, a + 2 3 C 3 .  a 

r = l  

in (2.3) and setting ).3---1 without loss of generality (see Fig. 14a for the 
intracell index). The full Hamiltonian is obtained by identifying site 1 in the 
(17-1)th cell with site 2 in the nth cell (Fig. 14b). The Hamiltonian is 

N 

Hs= ~ ~ }-' [( p* .1, _2,cP* .d ~ "~P*J J-h.c.) - - / ] ' 1  "~2Cn + 1, o "E n, a n + I, o 4 Ih a - -  "~2 t" n, o '"  n, o 
a = L l  n = l  

d d t  d } --'4-ePcP'l'-;, -n,  `7-n, c p  ,7 "~-~ C . . . .  C . . . .  ] -t- e P +  i c P  L I,aCN+I,P `7 :~  (4.56) 
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1 3 2 
(a) 

r=l r=3 r=2 r=l 

(b) 
' ---v--~ '-----v--~ 

n n-1 n = l  

Fig. 14. Model B. (a) A cell composed of two p-sites (U=0) and one d-site (U=~) .  
(b) The lattice constructed from the cell with cell labelings. 

where the on-site potent ials  are e l = - 2 ; _ - ,  e ~ = - ( 2 ~ + 2 2 - ' )  (2~<n~<N),  
eX+ ~ -- - -27,  and c a =  2. A unit cell is labeled by n. The ground  state is 

N 

IO, FI Pl <,"'J Io> 
n = l  ~ =  1", I 

N 

= l-I H 
, 1 = 1  o ' =  1, I 

pt + ~ r  ~at (21c . . . . . . .  + , .~ ,+~  . . . .  j I0)  (4.57) 

which is a half-filled state. In the pa rame te r  space 22 = - 2 ~ ,  this model  
reduces to one of  the models  in ref. 3. The  model  in ref. 6 is recovered by 
setting 2 ~ = - 22 = f ' -  ~. 

4.3.2. Band St ructure  in the Single-Electron Problem. We 
investigate the single-electron p rob lem for the Hami l ton ian  (4.56). We con- 
sider the system with an even n u m b e r  of  unit cells under  the periodic 
boundary  condition. A similar calculat ion to that  in Section 4.1.2 leads to 
the dispersion relation 

E+ = - � 89  [ ( 2 2 , 2 2 c o s  k + 2 ~ + 2 " ; ) z + 4 ]  '/2} 

(4.58) 

where - ,  + are the band  index with - (resp. + )  cor responding  to the + 
(resp. - )  sign, and k is the wave vector  with (4.6)�9 The energy gap between 
two bands  is 

/1 = 1 [(/~1 "1- /~2) 4 "t- 4]  ,/2 + �89 [ (2 ,  -- 22) 4 + 4]  ~/-' -- 22,22 

which is nonvanish ing  for any finite 2~, 22. (See Fig. 15.) 



1172 Y a m a n a k a  e t  al.  
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-8 I 1 I 
- n  0 

k 

Fig. 15. The dispersion relations E+ and E . The parameters are ~.t =22= I. 

T h e  e l ec t ron  n u m b e r  in the  g r o u n d  s t a t e  (4.57) c o r r e s p o n d s  to  fullfill- 
ing of  the  l ower  b a n d .  There fo re ,  the  g r o u n d  s ta te  o f  the  n o n i n t e r a c t i n g  
sys tem is insu la t ing .  

4.3.3. C o r r e l a t i o n  Func t ions .  F r o m  (4.50), the  n o r m  of  the  
g r o u n d  s t a t e  is 

<qs(~.s. I B e{V L, +2R2,L2, +Rs,L~, )  r  = - - ( R I 1  1 . . 
c] 

(4.59) 

where  the  c o r r e s p o n d i n g  ma t r i ce s  in (4.14), (4.16), a n d  (4.18) a re  8 

/ 2 2 _ ; + 2 2  22~ 0 1 1 

v,,=|~,,+~,;~ 2,t~+~a;_- a ; ,  I =  , F =  

/!oot (i o Oo) 
D = e 2 0 , C = C 2 

0 e 3 j  0 c 3 

(4.60) 

8 The derivation of the transfer matrices for Models B and C is available on request. 
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Here e~ ( i =  1, 2, and 3) are the eigenvalues of  T,,, 

where 

Here 

1 1 7 3  

s 1 

e l  = ~ + ~  

s 1 
e 2 - 3  6 

s 1 
e3 - -3  6 

( p l / 3  __ tpl/3) 

. . . .  [(pU3 _ tpJ/3) + i v /3  (pt/3 + tp,/S) ] 

. . . .  [(pU3 _ tp,/3) _ i x /~  (pU3 + tpU3) ] 

s = 2 2 ~  +222  + 2 ~ + 2 , 2 2 + 2 7 ,  

t = -- 42~ - 22~ 22 --42_~ - 42~ - 22~)~ 2 - -  22,2_] 

_ 423 4 3 - 2 1  + 2 1 2 2 + 2 1 2 3 - 2 4  

p = (p,  + 3 s/2 ,r 

" "~ 4 p,  = 162~+ 122~22+ 122~2~+ 1622+242 ,  

+ 1 8 2 ~ 2 2 + 6 2 ~ 2 _ - ' , + 1 8 2 , 2 3 + 2 4 2 ~ + 1 2 2  ~-122,2~3 , 

-- 122123+ 1 2 2 5 + 2 2 6 - 3 2 ~ 2 2 +  1 4 2 ~ 2 3 - 3 2 , 2 ~ + 2 2 6  

p2 = 2~2_~( 162~ " ~ " " - - 162~_-482] - 3 2 2 i 2 2 -  32212; 

_ _ 6 0 2 i 2 ~ -  7 -2 ,23  

- 6824 - 562~ - 402722 -- 32232~ - 322~23 - 402,24 

_ 5 6 2 ~ _ 2 8 2 6  + 122522 + l 4 -) 3 "~ _ 22,2;_+82~22 

+ 122~22 + 1 2 2 , 2 ~ - 2 8 2 ~ - 8 2 7  + 16262,_ - 8),,422s _ 82 i~ 224 

+ 1 6 2 ~ 2 6 _ 8 2 7 _ 2 ~ + 4 2 ~ 2 ,  6 -) s s _ - 4 2 , 2 _ ; - 4 2 , 2 2  

+ 102424 a 5 -) 6 _ -- 42i 22 -- 42i22 + 42127 -- 28 ) _  _ 

They satisfy e l > e 2 > e 3 > 0  for 2~ 4=0 and 2 2 ~ 0 .  The matrix L = ( L , j )  
[ R = (R;j)] is constructed from the left (right) eigenvectors. We choose the 
left eigenvectors L1 = ( L 1 , ,  LL,, LI3) r, L2 = ( L 2 , ,  L22, L23) r, and L 3 =  
(L31, L32, L33) T corresponding to the eigenvalues e, ,  e, and e3, respec- 
tively, where Lj, = 2~(2~ - ej)(1 + 2_~) - 26, Lj2 = (214 - ej)(22~_-- 2 ~ -  ej), 
and Lj3 = 2~(22~-  2 ~ -  ej). We choose the right eigenvectors R,  = (Rl , ,  
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N21 , R31) T R2=(R12  , R22 , R32) T and R3=(RI3, R23, R33) T, where RV= 
2 4 - 4  ,) ") 2 4 4 2 4 = R3j=221(22+22--ej). 222(21 --ej), R2j (z I - e j ) ( r  and 

We evaluate the expectat ion value of  the number  opera tor  (n~ . . ) .  The 
transfer matrices associated with ni ~,. are 

o o 
N~P'=/~222~\ 0 2 7 + 2 i 2 ~  ~ 24'  " 207 , N ' / "=  - ' ' -" 270" - , ,  2 (4.6]) 

From (4.27) and (4.59)-(4.61), we obtain 

((LI, -- �89 22Rll + (L12 -- LI3) R21 + LIsR31 

= ~ for ~ = p  
(n~ ) ~(2~LIt+�89 R,I+(2,L,1+21L1,)R,I+~21Ll. ,R~t (4.62) 

in the thermodynamic  limit N, i, N -  i ~ oo. It can be verified that  there are 
two electrons per unit cell, as ( n ~ ) +  (n~ t) =2 .  The results are shown in 
Fig. 16. The case 2_, = 1211 was discussed in ref. 6. We consider the case 

1 

0.8 

O.E 

g 

0.41 

0.~ 

/ 
F ~,2 = ~. 1 

(a) 
0 I I I I O~ 

0 2 4 6 8 10 
~'1 

4 
' I I I F 

(b) 

0.8 

2 
V ~ ~,,2 = ~. 1 

0.4 -\ 

0.21 - ~ - ~ .  

2 4 6 8 xl 10 

Fig. 16. Occupation on (a) the p-site and (b) the d-site for 22 = 1, 2, 4, and 8 (solid lines) 
and 22 = 2~ (broken line). 
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I).) I "~ 1, ).2 >> 1. The occupation on a p (d)-site has a minimum (maximum) 
at an intermediate value of 2~. 

From (3.31), (4.27), (4.32), and (4.59)-(4.61), the density correlation 
functions are 

/ - - \  
(n  ~ :,. {e_.} i n i ,) - -  ( 1 1 ~ ( 1 7 ; ~  = 

\ e l l  

- li -J l  1 _ _  R(c~)l(~t) 
" ' 2  ~ 2  

c ) e 2 c l c 2  

( e~ll ) - IJ - Jl + 
1 

R~alrl,I 3 ~3 (4.63) 
C l e 3 C ) C  3 

where 

RIp) j = (L1) - Lt2/2)  R u +  (Li,_ --LI3) R2j+ LI3R3j 

r.),',= R), Lj, + ( - R , ) / 2  + R~_,) Lj~_ +(  -R._, + R.,)) cj., 

R y  ) = ()._,Lll + ).l Ll,_/2) RIj + ( 22Ltl  + 21LI2) R2j + 2 t Lt_, Rsj/2 

d) Lj = ) . 2 ( R I I  "[- R21 ) L2!  + ). I ( R ) I / 2  + R21 + 2R31 ) Lzz 

in the thermodynamic limit N - j ,  i ~ ov keeping I J - i l  finite. The density 
correlation functions take negative values and decay exponentially with dis- 
tance. We show the results in Fig. 17. For [).~l '~ 1 and ).2 "> l the density 
correlations are suppressed. They have a minimum at an intermediate value 
of 2~. 

We evaluate the spin correlation function. The transfer matrices are 

s,,=~] 

) 2 "~ S~ "~") (~2~2~, O, 0), 

I ~ ~ I 2 S~' (,/) = ( ~2i, ).i, _~2)), s,.,,,,:t ) 

(4.64) 
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1 2 t 8 - - -  _ 
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Xl  (a)  

I , I , I , I , 
0 2 4 6 8 10 

z1 

-0.025 

/ / / I  ~ 
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, I , I , I , I , 
2 4 6 8 10 

Density correlation functions for (a) tile nearest neighbor p-sites and (b) for d-sites 
for 22=0.5,  1, 2, 4, and 8 (solid lines) and 2_,=), ~ (broken line). 
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From (4.53), (4.54), (4.59), and (4.64) we have 

<s~s:> 
FTTN - / S  L, (~o S / - i - l S ~' (ll)Ti- ' I 

FTTNI 

k e i /  

--2ej  c---~ (Lp_ + 2 iL ,3)  Ril 

for f l = p  and ~ = p  

1 --2~lq Ll l (Rl l  +2Rz l  + R~l) 

for fl = d and a = d 
X 

(4.65) 

(4.66) 

H ~'(dm = 22~ 22( l, 1,0), 

Hf'Ct'P'= 2~2~( 1, O, 0), 
(~ 
\ 2 2 4 /  

H~."*'= 2 2_~ 

(4.67) 

H , = 2  

2~ (L,z + 2~L,s)(R,, + 2R,, + Rs,) 
22~_elcl - . 

for f l = p  and ~ = d  
2~ 

2elcl (L l iR l l )  

for/3 = d and c~ = p  

We note that / S :'p ~=.d,~ \ .,-+l~.,- / 4(S:.,:as~:d), because the Hamil tonian is not  
invariant under  the reflection of  the lattice. All the spin correlat ion functions 
take negative values and decay exponential ly with distance. We show the 
results in Fig. 18. For  1211 ~ 1 and 22 > 1 the spin correlat ions are suppressed. 

We evaluate the singlet-pair correlat ion function (3.38) where i and j 
(k and l) are in the same cell. For  (4.55), case (ii), the correlat ion function 
is vanishing. We evaluate them for (4.55), cases (i) and (iii). The transfer 
matrices are 
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�9 �9 ~ . 0 . . . . . . .  

~176176 ///.<:~ 1 
:~.oo i 

~ t i l l /  t 
g Ii I I /  I 

-o.oo l I 

.O.Ol I . I , I , I , I , I .o.oel , I , I , I , I , 
0 2 4 ~'1 6 8 10 0 2 4 ~'1 6 8 10 

-O.Ol 

OoOo  
0 2 4 ~'1 6 8 10 

Fig.  18. Sp in  c o r r e l a t i o n  f u n c t i o n s  for (a )  t he  n e a r e s t  n e i g h b o r  p - s i t e s  for 2 2 = 2 ,  4, a n d  8 

( so l id  l ines) ,  (b)  (/-sites for 2_, = 1, 2, a n d  4 ( so l i d  l ines) ,  a n d  (c)  p -  a n d  d-s i tes  for 2 2 =  I, 2, 
4, a n d  8 ( so l id  l ines) .  The  b r o k e n  l ines  a r e  for 2 _ . = 2  ~ . 
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From (4.53), (4.54), (4.59), and (4.67) we obtain 

FTTN-kHL. I~')Hk-i-I H/R. f l , ) T i -  1 i 

( b*i.ibk, t) -- F T T N I  

: ( .>~_,,_. . ,  f~,3. , ,  
'(4212~ 

\ el J t elCl -LI2(RI| 'FR21) 

for y = p  

for 7=dp  

(4.68) 

(4.69) 

The singlet-pair correlation function decays exponentially with distance. 
The results are shown in Fig. 19 for y=p .  For 12, l ~ l  and ,~.2>> 1 the 
ringlet-pair correlations are suppressed. 

We evaluate the correlation function (c;. ~* ~' ~c), ~). The transfer matrices are 

G,,= - )< ,2 , (  1+2-~ 1)  
- x~ ,q  

( = <4.70> G~"P' = - 2'27 27 )'7 G~ ' 'm 2~+'  -~' '1 ~ 

, ()4 o) 
G~'ld)=--) ' l \) ' ]"  2)'7 )'7 

0 , , 

~ lil II ~/ ~, /..-"-~:~, 

! ## I l l  

I I 

-0.02 
0 2 4 6 8 10 

Fig. 19. Singlet-pair correlation function for the nearest neighbor p-sites for )<2 = 1, 2, 4, and 
8 Isolid lines) and 22= 21 (broken line). 
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The matrix G,, is diagonalized 

(4.71) 

where 

0--(o' ~  22, 
(4.72) 

Here gk are the eigenvalues of G..  g l = ( l  +21+22+o92) /2  and g2 = 
(1 + 21 + 22 -co2)/2, with o9, = [ 1 +2(2~ + 2_,) + (2~ -22)- ' ]  ~/2. They satisfy 
g ~ > g 2 > 0  for 2~4:0 and 22r  We choose the left eigenvectors /7~= 
(/~11,/Z,2) T and /Z_, = (/Z_,~, E.2~_) r corresponding to the eigenvalues gl and 
g2, respectively, where Lj, = ~ -  22 and Li_, = 1, and the right eigenvectors 
/~, =( f l , , , /~_ , , ) r  and R2=(R~>R22) r, where Rlj=gj--2~ and /~z~=2~. 
Here C = LR. 

From these matrices and (4.44), we obtain 

(c, ,ac~,,)  = --2, 22 f ' , " '+  --2,2_, (4.73) 

where 

' " - c , ? , , , - 2  ( g ' ' - 2 ~ ) L ' ' - + 2 ; L ' 3  [(g, , , --2~)R,t  +R2,]  

1 
f l d )  

lit e i g,,, c i c,,, 
[ 2~(g,,,- 2~) L~ L + ~ g,,Z~ L~2] 

(4.74) 

x[2~(g , , , - 2~ ) (R , ,+R2 , )+) t~ (R , ,+2R2 ,+R3 , ) ]  (4.75) 

The correlation functions decay exponentially. 
By the Fourier transformation of the correlation function (c~.,c).~) 

we obtain the momentum distribution function for ~ = p  and d, 

+ f , F2(k, r,_) +.fCo~' (4.76) 

w h e r e f ~ ' =  ( n ~ . )  and 

2r,[cos k-r , ]  
Fi(k, ri) = 1 + r~ - 2ri cos k (4.77) 
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where rg=-2~22g~/e~.  The results are shown in Fig. 20. There is no 
singularity in (n~..~). For [2~1~ 1 and 2,~> 1 the momentum distributions 
for the p- and d-sites are flat. 

4.3.4. Discussion.  All the correlation functions under considera- 
tion decay exponentially with distance. These results suggest the existence 
of a finite excitation gap. The existence of the energy gap is numerically 
confirmed in ref. 28. Therefore, it is expected that the state is insulating. 
The correlation lengths are given by ~,,,, = [ ln(e2/et) ] - l and ~.,.,. = ~bb = [ In 
(2~2~/e~)] -I for the spin and singlet-pair correlation functions, respec- 
tively, and ~,.c= [ln(2~2~_gl/el)] - l  (Fig. 21). (They satisfy the relation 
~,.,.> ~,,,, > ~.,..,.=~bb.) The correlation lengths of the correlation between 
p-sites and that between d-sites are the same. We note that the spin correla- 
tion is ferromagnetic. 

We consider the region 2~, 22 ~ 1. The d-sites are almost empty and 
the p-sites are almost doubly occupied. The correlation lengths behave like 
~.,.,.~ 2~ and ~ ..... ~.~.,., ~bb~2~/2 (for 2t =/]-2)- The correlation functions for 
the nearest neighbor sites are suppressed. 

For 121 [, 12_,1 ~ 1, there is almost one electron per site. The density 
correlation functions for the nearest neighbor p-sites are enhanced, while 
those for d-sites are suppressed. The spin correlation functions for the 
nearest neighbor p-sites are suppressed, and those for d-sites are enhanced. 
Therefore, the electrons on the d-sites have a tendency to behave like a 
localized spin. This corresponds to a kind of Kondo lattice regime ~6~ in the 
sense that there are one localized electron and one conduction electron per 
unit cell. The ground state is described by a collection of local singlets 
between them. The effective exchange coupling between the p- and d-sites 
J r  2~22/ (ep-  e a) is comparable to the hopping amplitude between p-sites. 

For 1211 ~ 1 and 22 >> 1 the correlations are suppressed. This is because 
the system decouples to a collection of pairs of p- and d-sites. 

The ground state (4.57) is a half-filling state. The filling factor 
corresponds to that of a band insulator in the noninteracting system where 
the excitation gap satisfies the relation 1 < 3 < 2. Therefore, the correlation 
length is finite and is almost independent of the parameters 2~ and 22, 
which is a different situation from that of the ground state (4.57). The 
properties of the ground state (4.57) are completely different from those of 
the noninteracting system. 

4.4. Model C 

4.4.1. Hami l ton ian .  The lattice of Model C is constructed from a 
cell with four d-sites and one p-site (Fig. 22a). The model has four free 

822/84/5-6-20 
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Fig. 20. Momentum distribution functions for (a) the p-site and (b) the d-site for 
~.j =),2=0.01, 1, 10, and 100, and those for (c) the p-site and (d) the d-site for 22=0.01, 0.I, 
1, 5, and 10 with 2~ = 1. 
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Fig. 21. Correlation length of(a) the correlation function (c~. ,t ~z- ) '  (b) the density correla- 
tion function, and (c) the spin and the singlet-pair correlation functions for ~.t = 2_~. 

parameters. We investigate the simplest model with one parameter. The cell 
Hamiltonian is obtained by choosing 

5 

~ c ~ _  Z L.c,. ~ - 2  c ~ ,l d ~4c~.~+25c~ . . . .  -- . t l .o'dt-~2C2, cr"~-~3C3.,'~ -~- ,~r 
r ~ l  

and setting 2 r = 1 ( r =  1, 2, 3, 4) and 25 = 2 (see Fig. 22a for the intracell 
index). The full Hamiltonian is obtained by identifying sites 1 and 2 in the 
( n -  1)th cell with sites 3 and 4 in the nth cell, respectively (Fig. 22b). The 
Hamiltonian is 

N 
H s : ~  ~ y '  [ (  ] . t l l t ~ p  ] . . d 2 t . , p  _ _ ] o d l t  cp  ,]~d2t cp  

~ = T , I  n = l  

_ _  c d l t  cd2 _til t  dl _ _  pd2t d2 _dl t  d2 pd2t dl 
- n , a - n . a - - C n + l , a C n , r  ~ n + l , r  a - - ~ n + l , r  o d - h ' c ' )  

~ p ~ p t  ~p ~ _  d t / I t  dl  d d2t  d2 ] 
Cn, ogn, ~nCn, aCn. tr3~-~nCn, oCn. Gj 

) 
d - d l t  tit d d2t  d2 ~ 

dr ~N+ 1CN+ 1, aCN+ I, a 3ff 8N + 1CN+ I, aCN+ t, a 
J 

(4.78) 

, d _ _ 4  (2~<n<~N), and where the on-site potentials are e P = - 2 - ,  e , , -  
el/= eN +d t = - 2 .  A unit cell is labeled by n. Here c dl,,.~ ,c,,.r a2~,. is the 
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Fig. 22. 
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IW' 1~r= 2 r=41~r=2 ~ ~ lw '  
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n n-1 n = l  

(a) (b) 

Model C. (a) A cell composed of one p-site ( U = 0 )  and four d-sites ( U = o v ) .  
(b) The lattice constructed from the cell with cell labelings. 

annihi lat ion opera to r  on a d-site for r = 3 (4) in the n th  cell. The  ground  
state is 

N 

�9 gs> = #  FI 1-I Io> 
i = 1  o '=T ,  ~ 

N 
= ~ E E , d l ,  - -  s162 . all, rd21" tc .... -,--.., .  +c , ,+1 . , .+~ .+~ . , .  + 2c~,~1 I0) 

n = l  o -=L!  
(4.79) 

which is a 1/3-filling state. 

4.4.2. Band Structure in the Single-Electron Problem. We 
investigate the single-electron p rob lem for the Hami l ton ian  (4.78). We con-  
sider the system with an even n u m b e r  of  cells under  periodic b o u n d a r y  
conditions. A similar calculat ion to that  in Section 4.1.2 leads to the disper- 
sion relations 

E l = - �89 { 6 + 2-' + 4 cos k + [ (6 + 22 + 4 cos k) 2 - 822 ] l/z} 

E,_ = - 2 (4.80) 

E 3 = - �89 { 6 + 2-" + 4 cos k - [ (6 + 22 + 4 cos k) 2 - 822 ] ,/2} 

where 1, 2, and 3 are the band  indexes and k is the wave vector  with~4.6).  
The  energy gap  between the lowest  two bands  is A = 0 for 0 < 2 < ~ /2  and 
A=2-"  for ~t > x/~.  (See Fig. 23.) 

The electron number  in the g round  state (4.79) cor responds  to full- 
filling of  the lowest band.  Therefore,  the g round  state of  the noninterac t ing  
system is metall ic for 0 < 2 < x / ~  and is insulating for 2 > x/~. 
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The dispersion relations E I , E ,_ ,  and E 3. The parameters  are (a) 2 = 1, ( b ) ) .  = x/'~, 
and (c) 2 = 2 .  

4.4.3. Correlat ion Functions. From (4.50), the norm of the 
ground state is 

c = - - ( R l l L l l  +4R?.,L,_I + R3tL31) (~G.S.[ ~C.S. ) e~ 
Cl 

(4.81) 

where the corresponding matrices in (4.60) are 

T,, = 

(2+4 2+ 4 4 2+4 4 
2+2"- 2+422  , I=  , 

2 8 
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(el 0 :) (!0:) 
D = e 2 , C = C 2  

0 e 3 0 c 3 
(4.82) 

Here e; ( i=  1, 2, and 3) are the eigenvalues ofT,,, 

e I =~ S+ 

s;I  1 e 2 = g + ~  (1 + 2  v/3) (1 --2 x/~) q 
q 

s; [  :+ ] 
e3 = g -  1-5_ (l + 2 ,,/'3) ( 1 - 2 ,V~)  q q 

where s = 6 + 82 z + 24, l = 22(48 + 5822 + 1624 + 26), and q = (p, + 33/2p2i),/3 
with 

P z = 46824 + 51226 + 18328 + 242 to + 2,2 

p_, = 26(4096 + 673622 + 428824 + 132826 + 19228 + 92 '~ 

They satisfy e , > e _ , > e 3 > 0  for 2 5 0 .  The matrix L=(L0.) [ R = ( R v )  ] is 
constructed from the left (right) eigenvectors. We choose them as we did in 
Section 4.3, where Ljl=(ej--2)2--4ej22, Lj2=422(ej22+ej-2), Lj3= 
24(ej+2), Ru=(ej -2)2-4ej2  "-, R _ , j = ( 2 + 2 2 ) e j - 4 ,  and R31=2(ej +6). 

We evaluate the expectation value of the number operator (n~. ~). The 
transfer matrices associated with ni =,. are 

/222+24 222-t-424 24 / /1-t-22 222+24 �89 / 
NCiP) = /  �89 22-" 0 �89 ' N 'S '=  0 �89 1+22  2 1 2  

(4.83) 

From (4.27) and (4.81)-(4.83), we obtain 

~t < n , , ~ )  = 

~cl (4Ll' R21 +L12R31) 

for ~ = p  (4.84) 

1 
~ c  I [(2Li i -- LI2 + 2L13) Rll + (2Li2 -- 4L13) Rzl + 2LI3R31 ] 

for ~ = d  
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It can be verified that there are two electrons per unit cell, as 
<n~) + 2 ( n ~ ! ) = 2 .  The results are shown in Fig. 24a. For I,q ~ 1, on-site 
potentials satisfy the relations ea < ep and ]ep- ea[ >> [)-I (the hybridization). 
There is almost one electron per d-site. The p-sites are almost empty. For 
)~>> 1, on-site potentials satisfy the relations ep ~Sa and ~a-ep >>,L The 
p-sites are almoust doubly occupied. The d-sites are almost empty. 

A 

m.2 0.5 
t -  

V 

1 ] i i 

~ (a) _ 

\ 
%, 

, , , . . . .  7 . . . . .  + . . . . .  . . . . . . . . . . . . . . . . . . . . . .  
00 10 20 

X 

0 

A -0.02 

-0.04 

%- 
-0.06 

-0.08 
0 5 10 

Fig. 24. (a) Occupation on the p-site (so|id line) and the d-site (broken line). (b) Density 
correlation function for the nearest neighbor p-sites (solid line) and d-sites (broken |ine). 
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From (3.31), (4.32), and (4.82)-(4.83), 
tions are 

Yamanaka et  al. 

the density correlation func- 

(n~n~) -- (nT>(n~)  

e .~  - l i - j l  , 1 4  e3 _ _  R ~ P l L  ~t'l 
RIT)L~'m + --  3 3 

4 C l C  2 - _ \ e l /  4 C L C 3  

for e = p  

( ,)-I,-J, (e~)  -1'-21 1 e, 1 R~,/)r~a ~ + _ _  
�9 - - -  R ( d ) [ l d )  

~ ' 2  ~ 2  ' ' 3  ~ 3  \ e , /  4clc2 4cjc3 

for ~ = d  

(4.85) 

where 

R) m = 4 L ~  RU+ L~2R3j 

L}:"= 4Lil R21 + L:R3~ 

R} al = (2Lll -- Llz + 2L13) Rij + 2(L12 -- 2Li3) R2j + 2L13 R3j 

L) a' = L j, (2R,,) + Ljz( - R l, + 2Rz, ) + 2Lj3(R,I - 2R2, + R3, ) 

The density correlation functions take negative values and decay exponen- 
tially with distance. We show the results in Fig. 24b. For 1,11 ~ 1 and 2 ~> 1 
the density correlations are suppressed. 

We evaluate the spin correlation function. The transfer matrices are 

s,, = - 2 

s ~  ~pl (,z,1-, _~,1-, 0), 

S:" (d) 1 "~ = (~,1-, o, 0), 

,t2 / 

S~ "~pI= 0 

0 

_,14 

(4.86) 
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From (4.65), (4.81), and (4.86)we have 

2 4 
- - - ( L j I R , I + 5 L t 2 R 2 1 )  for fl=pando~=p 

2el cl 
22 

- - - L I , R I I  for fl=pando~=d (4.87) 
2e I c~ 

2 z 
- - - L I 3 R I I  for fl=dando~=d 

2el ca 

The spin correlation functions decay exponentially with oscillating sign. We 
show the results in Figs. 25a-25c. For 121 ~ 1 and 2 ~> 1, the spin correla- 
tions are suppressed. 

We evaluate the singlet-pair correlation function. For (4.55), case (iv), 
the correlation functions are vanishing for Ik - il/> 2. We evaluate them for 
(4.55), cases (i) and (iii). The transfer matrices are 

H,, = 2, Hin"r' = 22(1, 5, 0), H~ "'~'' / - 4 2 - " ~  . =t  ~ ) (4.88) 

lbr y = p  and dp. From (4.68), (4.81), and (4.88) we obtain 

(b~jbk, I )=  _/pkt~II)-Ig-k1224(LIIRII_I_5LI2R21)__ for ~,fl=p, dp 
elCl 

(4.89) 

The singlet-pair correlation functions decay exponentially with distance. 
We show the results in Fig. 25d. For 12] '~ 1 and 2 >> 1 the correlations are 
suppressed. 

We evaluate the correlation function (ci.,,c~ ~). The transfer matrices 
are 

o,,=_2(,+.1 f) 



1190 Yamanaka e t  al. 

A 

3~ 
o9 
, 4 . _  

co 

A 

7_* 

0.02 

0.01 

0 
0 

0 

-0.01 

-0.02 

-0.03 

-0.04 

-0.05 

-0.06 

-0.07 

-0.08 
0 

. . . .  I ' ' 

5 

. . . .  f 

, , , , I i 

5 

10 

10 

Fig. 25. Spin correlation function for (a) nearest neighbor p-sites, (b) p- and d-sites, and 
(c) d-sites. (d) Singlet-pair correlation function for the nearest neighbor p-sites. 

i) G ~ ' l m  = - 2  4 

1 1 ~ ) '  G~ ' l a )=  - �89  2-, (4.90) 
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The matrix G,, is diagonalized as 

G . =  - 2 ~ D E ~ - '  (4.91) 

where the matrices are shown in (4.71). The corresponding quantities are 
g~ = (2 + 22 + 2w3)/2 and g2 = (2 - 22 + ~.t'o3)/2 with co3 = (4 + 2-') ~/-~. They 
satisfy g~ > g2 > 0 for 2 ~ 0. We choose the matrices ~ = (Ls and R = (/~u) 
as we did in Section 4.3, where T.j, = ( g j - 1 ) / 2 2 ,  Lj_,= I, Rjj=gj- -1 ,  and 
/~2j= 1. [See also (4.72).] From these matrices and (4.44) we obtain 

, "t ( _ 2 g t ~  -li-jl  ( -li 
(ci.,,c.i ,~,) f~=~ + --2g'-) -.il = ' ' }  (4.92) J 2  \ e~/ e l l  

where 

1 
f~,,P' 2Cl~,,,elg,, ' [2(g,,,-- 1) Ltl +g,,,L,2] 

x [ 2 ( g , , - - 1 ) ( R l t + R 2 1 ) + 2 2 ( R l t + 4 R 2 , + R 3 1 ) ]  (4.93) 

2 
f , d , _  ~ ~ [ ( g , , _ l ) L , , + 4 L ~ a ] [ ( g , , _ l ) R l ~  +22R,~] (4.94) 

m ,,].CI C m  - . - 

The correlation functions decay exponentially with oscillating sign. 
By the Fourier transformation of the correlation function (c~.~c~) ,  

we obtain the momentum distribution functions for ct = p  and d, 

(n~. ~) = f',~'F,(k, r, ) + f~'F~_(k, r2) + f~o ~' (4.95) 

where Fi(k, ri) is defined by (4.77), r i=  - g i / e l ,  and JoCC~ = (ni.,,).~ The 
results are shown in Figs. 26a and 26b. There is no singularity in the 
momentum distribution functions. The momentum distribution for p-sites 
has a sharp peak at k = ~z for [21 ,~ 1. It is almost flat for 2 >> 1. The momen- 
tum distribution for d-sites is expected to be flat for the complete limit 
12[~1. 

4.4.4. Discussion. All the correlation functions under considera- 
tion decay exponentially with distance. These results suggest the existence of 
a finite excitation gap. Therefore, it is expected that the state is insulating. 
Their correlation lengths are ~,,,, = [ln(e2/el )] - l, ~.,.,. = ~bb = [ln(2/e,) ] - 1, 
and ~,.c= [ln(2g~/et)]-I (Fig. 26c). (They satisfy the relation ~,.c> ~,,,,> 
~.,,,. = ~bb.) We note that the spin correlation is antiferromagnetic. 
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(a) 

0.5 

,8 b 
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k 

10 

8 

_~6 
o = 
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= =  , -" 
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Fig. 26. Momentum distribution function for (a) the p-site and (b) the d-site for 2 =0.1, 0.5, 
1, 2, and 10. (c) Correlation length of (d) the correlation function (ci . , ,c~o),  (e) the density 
correlation function, and (f) the spin and the singlet-pair correlation functions. 
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We consider the region 121 ~ 1. There is almost one electron per d-site. 
The p-sites are almost empty. The correlation lengths are large. However, 
the correlation functions for the nearest neighbor sites vanish. 

For 2>> 1 there are almost two electrons per p-site. The d-sites are 
almost empty. The correlation lengths and the correlation functions for the 
nearest neighbor sites vanish. 

The ground state (4.79) is a 1/3-filling state. The filling factor 
corresponds to that of the band insulator in the noninteracting system for 
2 > x//2. In the noninteracting system we have the metal-insulator trans- 
ition at 2 = x/~ by the variation of 2. However, the ground state (4.79) is 
insulating for any 2. The properties of these states are completely different. 

5. ABSENCE OF THE PERSISTENT C U R R E N T  

In Section 4 we assumed the parameter 2r to be real. Relaxing the con- 
dition, the effects of a magnetic field are included by taking hopping matrix 
elements to be complex. Thus the effects of the magnetic field are 
investigated exactly for the systems of strongly correlated electrons 
described in this paper. Let us calculate the persistent current. Considering 
the system in a ring geometry and putting a flux through the ring, we can 
measure the Aharonov-Bohm effect and the persistent current. ('9-23) In the 
ring geometry, we include the effect of the flux q5 by changing the hopping 
matrix elements of the Nth cell. We first classify sites in the Nth cell into 
two classes as (i) sites which belong to the Nth unit cell and (ii) sites which 
are identified with sites in the cell C,. We denote the sets of the sites (i) and 
(ii) by CN:, and CN,,., respectively. The cell Hamiltonian (2.2) associated 
with the Nth cell is obtained by choosing 

ICM 

~ . A r  ~ 2r ( ) c , . , - I^ , )~  . (5.1) 
r = l  

where 

2 ( ' ' " ) ,  for reCu:, 
2'rN)(r = 

l r for reCk:,, 
(5.2/ 

with real (N) 2 , . .  From (5.1) and (2.3) for 1 ~ < n ~ N - 1 ,  the Hamiltonian is 

,53> 
G ,~  x , y ~ A N  



1194 Yamanaka e t  al. 

where 

N - - I  

t~. ,.(~) = ~ tl"~ +t(N) r . .  .... ..... ( )  
n =  1 

for x = f ( n ,  r), y = f ( n ,  s) (5.4) 

with 

I j  (n)~(m).~ 
i~ r I~. UII. i i t  

t r,('n)--s - -  2(2t/') 2 

It,V:")-" 

( l<~m<~N--1,  l ~ < n ~ < N - 1 ) a n d  

~ ( N )  , ( N )  ( ( 2 ,  ( r  , t  
( N ) - - ( N )  }2,. , l  (r 

( N )  ( N )  ( N )  t,...,.(~) = ~ 2  r 2.~ 
/2(2(,.u)) 2 
\(~(#,)2 

for r # s 

for r = s a n d r ~ C , , : v =  

for r = s a n d r e C , , : v =  

for r :~ s and r e C N ;  v ,  S ~ C N ;  ,, 

for r 4: s and r ~ CN: ,,, s ~ C N :  e 

for r :r s and r, s ~ CN: ,  

for r = s a n d r e C N : v =  

for r = s a n d r e C N : v = o  

(5.5) 

(5.6) 

The ground state of H s ( r  is 

I r 1 6 2  I-I ~ .... c,N.~(~) I0) (5.7) 
o'=T. I ; 1 

The ground-state energy is given explicitly by 

N - - I  

e o ( e ) = -  E E 2 2(/"12- E 2 Ii',Y'(e)l 2 
n = I r E Cn r E CA' 

N 

= -  Z Z 2 ,v,',,i -~ (5.8) 
I1= I r e C n  

It is independent of the flux q~. The persistent current I is evaluated by 
using the Byers-Yang relation. (~9) We obtain 

aEo( �9 ) 
Ioc 0 (5.9) 

The persistent current is vanishing for any of the solvable models discussed 
here. This is consistent with our conclusion that the ground state is 
insulating. 

Extending the discussion here, the absence of the persistent current 
can be shown in any dimensions for the models discussed in this paper. 
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6. S U M M A R Y  

We investigated three models with strongly correlated electrons which 
have the RVB state as an exact ground state. The number of electrons per 
unit cell is restricted to be 2. The correlation functions are evaluated 
exactly using the transfer matrix method for the geometric representations 
of the valence-bond statesJ 24~ The two-point correlation functions for spin, 
density, and singlet-Cooper pairs are obtained for any distance. All the 
correlation functions decay exponentially with distance. The momentum 
distribution functions are also evaluated and there is no singularity. The 
results suggest that the ground states of the models are insulating. The per- 
sistent currents are also considered and turn out to be vanishing. 

APPENDIX  A 

We describe the models used by several authors 1~-51 and those 
investigated in this paper using the cell construction of Tasaki (see Table 
I). The lattice is constructed by the cell in the second column in Table I. 
The cell for the line graph is constructed as follows. We define a lattice 

= (A, B), where A is the set of the sites (vertices) and B is the set of the 
bonds (edges). The line graph L(Z,e)=(A L, B L) constructed from a lattice 
A has the bonds of ~ as sites (AL = B), and two sites are connected by a 
bond in B L if the corresponding bonds in B have a site in common. The 
cell is defined by sites (EA L) which are connected by a bond (EB) to the 
same site (E A). 

APPENDIX  B 

We first note the equalities 

c i. ~b,*j = sgn(a) c~. ~( c ,. ~c ~ ~) 

and 

(B.1) 

bi.jb~k: Z (Ci, aC~cr)(CJ,-crCtk, -tr) Jffz~i (B.2) 
o'=T, ~ 

t t where LI,= -- '~-=r.  ~ Ci.~,(Ck. - , C z ~ )  C,. _~,  which has the property/I i 10) = 
(01,4,=0.  

We show an equality. Consider a connected graph W u W' with 2n 
(n/> 1) bonds. We set 

W =  {{2, 3}, {4, 5} ..... {2n, 2n+  1}} 

W ' =  {{ 1, 2}, {3,4} ..... { 2 n -  1, 2n}} 
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We define the quantity 

L ( n ; a , p ) = ( O [  b2k, 2k+ 1 c~.,,c~,,+,,,, b,_e_.,2k 10) (B.3) 
1 k = l  

For n = 1, from ( B . 1 )  w e  have 

L ( 1 ; a , p ) = ( O l b 2 . 3 c  k C* t ,. 3.,,b,.2 IO)  

= - - ( 0 1  b 2 . 3 c ~ . p ( C l . a b I .  2 ) I O )  

= - sgn(a) (01 b,_.3c~,,,c.. _ .  IO) 

sgn(a) s g n ( - p )  (01 c, _~c~. * = - .  _ ~ c 3 . , , c 3 . p  10> 

= - -  f i , , ,  p ( B . 4 )  

From (B.1) we have 

L(n; a , p ) =  (0l ('kI~__' I 

= - -  sgn(a) 

= - sgn(a) 

/ r  

( 0 [  b.~k. 2/,.+ I t t b t k  - 2k I O )  C2n + I. pC2. - o  I. 
I k = 2  

. . . . .  3C2n+ 1, I;C2, --a I, 2k 
\ k = 2  k = 2  

ii 

= - sgn(a) 

x (-c3.,~) ,* [-[ b~k- 2k IO) ~2n+  I,p 1. 
k = 2  

= - ( 0 [  b2k. 2k+l C3..C2,,+t.p b ~ -  t.2k [0) 
\ k = 2  k = 2  

(B.5) 

We change the labeling of the lattice sites by the rule j--+ j - 2  and obtain 

I n  --  1 / n -- 1 

L(n; a , p ) =  - ( 0 l  ,k~_-, b2k. 2k +, C,,,,C~,,_,.p k='I-I b ~ - l . ~  10) 

= - L ( n -  1; a, p) 

= ( - 1 )  ''-~ L(1; a, p) 

= ( -  1)" ~,,.p (B.6) 

822/84/5-6-21 
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We show (3.10). For the self-closed bonds and degenerate graph we 
have wj=  1 and w j = 2 ,  respectively. Consider the nondegenerate loop 
Wj to W5 with lj = 2n (n >~ I ) bonds. We set 

Wj= { {2, 3}, {4, 5} ..... { 2 n - 2 , 2 n - l } , { 2 n ,  21 ,+l  (=1)}}  

W;.= { { 1, 2}, {3,4} ..... {21,-1,21,}} 

From (B.2) and (B.6) the weight is 

k = l  k = l  

,1-- I ) n -  1 
=<01 ~ b2k, 2k+, b,, ,  t 

_ ,,_,,+,b,_,,_,,2,, FI b*,_,_,,k IO> 
\ I k = l  

c-' ) 
t .t ~ + A 2. = <01 b2k.,_k+, c2 . . . .  c2 . . . .  c , .  _~c,_, ,_, .  _ 

\ 1 a , ~  

n - -  I 

• [ I  b~k_,._.k IO> 
k = l  

IT -- 1 / ,,i -- I 

,U ' c' lq b~k_ I0> = Y'. <01 b , k . _ , , + ,  c_, . . . .  c_, . . . .  c , . _ ,  . , ,_ , ._ .  ,._.. 
a=l,,[. \ 1 k = l  

n - I ) n - 1 

= ~ <0l b._l,.2k+, C , . _ ~  2 , , , - , , + , . - ~  - , .  
o = T , I  \ I k = l  

= ~ L(n- 1; -o ' ,  - -a)  
o - =  T, ~ 

= Y" ( - 1 ) " - ' a _ ~ . _ ~  
a = l , l  

= 2 ( - 1 )  "-1 

= 2 (  - 1 ) 6 / 2  - l (B.7) 

where we used the relation l =  217 in the last line. 

APPENDIX C 

We first note the equalities 

S,b*,.j  = ' - *  �9 ~_bi. j-[-~i . j  

S~b*,.j = ! * _ - �9 2b, , j  aj. ,  
(C.1) 
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where 

�9 ,.[Cj,~-~ (C.2) 

is the creation operator of the triplet pair between sites i and j and satisfies 
the relation b*i.j.= - b f~ ~. Here 

t _ c  ? c~Tc/.ln~,~ ,,~c~,rni. T 
5~,i = -- 2 

t t t 
~ i j : - -  c i"f  c J"t  n i"t  -l- c ti"t r l ll i"f  

�9 2 

(C.3) 

which have the properties 5,-10) = (01 5 i = 0  and 3i 10) = (01 6~=0. 
We show (3.17)�9 Consider the connected graph W ~ ...... w W '~ ...... I with 

2n (n >/1) bonds. We set 

W' ....... ' =  {{2, 3}, {4, 5} ..... {2n, 2 n +  1}} 

W''"-"' = {{ 1, 2}, {3, 4} ..... { 2 n -  1, 2n}} 

We denote the right-hand side of (3.17) by S(m), 

S(m) = (01 bzk.~+l S:lS., t b ~ _  ]._,k 10> 
1 k = l  

(C.4) 

where we set x =  1 and y = m .  From (C.1), we have 

S(2m + 1) = (01 b'_k, 2k+~ S~S~.,+] b~k_t.~ 10) 
I k = l  

c '  .... ) 
= ( 0 1  kI~= b2k, 2k+ 1 I ~  b2k ,  2 k + l  

\ 1 / \ k = m + l  

• f i  l'~k_,,2k IO) 
k = l  

=(01  ~ b,_k,,_k+l ~ b2k. 2k+] 
\ 1 I X k = r n + l  

k = l  
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= ( -  1)2" S(1) 

= ( - 1 )  2'' <Ol b~.~+, S~S--, b~k_,.~_,~lO> 
I k = l  

- ~  (OI b~.zk+t b~k_l,Zk I0> 
k = l  k = l  

Similarly, we have 

f i  b2k, 2k+l f i  b~-l,2k [0) 
k = l  k = l  

(c.5)  

where we used the relation l(x' ,  y ' ) =  2n. 

A P P E N D I X  E 

We show (3.28). Consider the graph Wl")u W'(-"); we set 

W ( ' ' =  {{1 (=x) ,  2}, {3, 4} ..... { 2 n -  1, 2n}} 

W'(X)= {{2, 3}, {4,5} ..... {2n, 1}} 

= ( - 1 ) -  

= ( -- 1 )tc,-'.y'~/2 (D.1) 

s(2m) = - I/-~"'-' �88 (01 (c.6)  

Therefore, we obtain 

S(m)  = �88 - 1 )d .,. ,,, Wj (C.7) 

where we used the relation d(x,  y ) =  m - 1  and the definition of %.. 

A P P E N D I X  D 

We show (3.22). Consider the line WC""Y'~u W 'l'''-'''~ with 2n (n>~ 1) 
bonds. We set 

W ''''-~'', = {{2, 3}, {4, 5} ..... {2n, 2n + 1 ( =y ' )}  } 

W"X"-'"'= {{ 1 (=x ' ) , 2} ,  {3,4} ..... { 2 n -  1,2n}} 

From (B.3) the weight is 

* b~k_ I0> = L(n; a, a) (OI b2k.'-.k+l Cl,oC2n+l.p 1.2k 
I k = l  
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We have 

<0l b,_k-,.2k n, .~  I-I t b~,  ~k+, I0> 
I k = l  

(n ) ' = <Ol b~_, . z~  b1,(1  - cl.=c*,. =) b,*,, 1_. I-[ b_.~.t z~ +, 10> 
\ k = 2  k = l  

fl ' io> = < 0 1  b 2 k _ l . 2 k  b2k, 2k+ I 
k = l  k= [  

- < o l  b,_k-,.z~ c , . . c l . ,  bt~.zk+, 10> 
1 / , ' = 1  

(E.1) 

F r o m  (B.3), the second term is 

<01 b~_~_,.,_k cl .~cI. ,  bzk.* ,_k+l 10> 
I k = l  

fl / n--I 
= , c  c b,  [ I  t <01 b,k_l.2k bl, t t b2k ,  2k+  I 10> _ _ 1 ,o"  I , a  _ n ,  I 

kk=2  k = l  

, , 
= lc2 . , , )  ( - -c2, , ,~ ,bl .  

\ k = 2  

i t -  I 

,1 I-[ t I0> b2x-, ~ +  1 
k = l  

ii.~. [ ) n - - 1  

* IO> = < 0 l  b,_,,_,.,_~ c,_.~c,_ .... [ I  * b2k, 2k + 1 
\ k = 2  k= I 

,,-1 b*k ~k ) t = <01 . ) ] ,  _ .- +, q .~c . , ,_  
n - -  1 

, . o  M btk-,,-,k Io> 
k = l  

= L ( n  - 1; or, 0 )  

= ( - 1 )  " - I  

= ( - 1)/~')/z - ' (E.2) 

The fourth line is obtained by renaming the s i t e j  as j -  1. We  used the rela- 
t ion l (x)=2(n-1).  F r o m  (B.7) and (E.2) we have 

fI 1:I'  <01 b ~ _ l . 2 k n l ,  a b2k, 2k+ I 10> = 2 ( - -  1)1( -" )/2 -- I - -  ( - -  I )  t ( ' - v - ' -  j 
k = l  k = l  

= ( __ 1 ),'C,')/2--I (E .3 )  
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APPENDIX F 

We show (3.35). For (i), the sets W ~''-') and W 'c'':'~ are empty. The 
right-hand side of (3.34) is 

c t t c t t wj(x, y; a)= �89 (Ol c,. ,,Cy.,, , , , , c , . , = l O > + < O l c , . , , c y ,  l ~ ' '  l ~ C , " " ~ IO>} - - -  1 

(F.l) 

w h e r e  w e  u s e d  the  equality (0l Cx, etCy. aC vt ~c,.* ~ 10> = <01 c,. . . . .  oc~ _~%*. _~ 
t ~10> 1. Cx. 

For (ii) we suppose that the site x belongs to the graph. From (3.28), 
the right-hand side of (3.34) is 

wj(x, y; a )=  �89 cy, ~ c.,.t 10)(0l ( ~  I,' ~'~ w,,.,, b,,,.r 

t bt • c,..,,c ,.,~ 1-I ..... 10) 
{ u, v} e W c'l 

{ [ l '  , V ' } e m ' [ .'l } 

x b,,,. ,,' t 1 c,..ocx. ~, I-[ b Z. ,, 10) 
{ u, ~, } e W TM ) 

= ( _ 1 ) ~ , - v 2 - ,  (F.2) 

where we used the equality (0l c,, ~,c,*., 10) = (0l c,, ct 10) = 1. 
. a ., -a y, -a 

For (iii) the right-hand side of (3.34) is 

wj(x, Y; a )=  ~ {(0l ( I-[ b , , . r  bt _ c , , , , , c , ,  , ,  I - [  , . , ,  10) 
{u' ,  t,'} e W,C,. yl {u, v} e W c~'y~ 

{u' ,~;  W "lx.yl { u , v } e W  t'~' r~ 

{u' ,  v'} e W'l.~. y) {u, v} E WIx. Y) 

{u'. v'} E W,c.,. J'l {u, o} E wI.,, yl 

= ( - 1 ) I I x l / 2 - ,  ( _ 1 )/<.,,v-" - I ( F . 3 )  

where we used (3.28). 
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For (iv) consider the graph WI"Ylw  W 'r We set 

W 'x'.''= { { 1 ( = x ) ,  2}, {3, 4} ..... { 2 n -  1, 2n}} 

W " ' Y ' =  { {2, 3}, {4,5} ..... {2n, 1}} 

We denote one of the terms in the right-hand side of (3.34) by G(n, j; a, r), 

G(n, j ;a , r )=<OI  b~ 1,2k Ct.~C). C* eft, b~. [0) - -  r j , r  * 2 k + l  
1 k = l  

(F.4) 

From (B.1) we have 

G(n, j; a, r) 

) , , ,  
= ( 0 1  b , k - t . ~  bl .2cl .~O. * t t I-[ b~," 10> - r C j .  r C I .  ~b2.. I 2 k +  1 

\ k = 2  *=|  

) , , ,  
= < 0 1  b 2 k _ l , 2 k  (__b l .  lC2, a) Cj. rC~r ( t "t ) I - [  t 10>  --C2n, ab l ,  I b2k. 2* + l 

\ k = 2  k =  1 

) ,,-, 
= { 0 [  b2k- l . ,~  C,,Cj.  "* * 

_ .  ~%~Cz .... I-[ b~k.',k+, I0> 
X k = 2  k = l  

n - I ) n - 1 

= ( 0 l  I-[ b2k. 2,+l C,.,~C:_l.~C}_l.~C,~_l.,,t 1--[ b2k* - L 2, 10> (F.5) 
\ k =  I k = l  

The last line is obtained by renaming the lattice sites by the rule k -* k - 1. 
For j = 2m we have 

G(n - 1, 2m; a, r) 

-----<01 b2k, 2k+l C I , a C 2  . . . .  l, r C 2 m - l . r d 2 ( n - 1 ) + l , a  [ I  b~-l.2a'lO> 
k = l  k = [  

=<01 b2k.._k+, C._ .. . .  , .~c . . ,_ , .~C._ . ,_ i i+ l .~( - -c l .ob[ ._ )  

x I-[ b* IO> 2 k -  1.2k 
k=2 

(0' ) ' ' = --sgn(a) <0l b~._,,+l c2 ... .  ,.~c2 . . . .  z.~c,_o,_,~+,.~c2._~ 
1 

t l - -  1 

• I-[ b L _ , , _ ,  10> 
k=2 



S t r o n g l y  C o r r e l a t e d  E l e c t r o n  M o d e l s  1 2 0 5  

nfil / C t t 
= - - s g n ( a )  ( 0 1  bzk, 2k+l (b2.3c2,-,7) C2m-l.r  2 m - - l . r r  

\ k = 2  

n - -  1 

• 1-I b X _ ,  ,_k I0) 
k = 2  

nfil / t t 
= - - ( O I  b2k,  2 k + l  C3. aC2m-l,  rC2n,-I.rC2c,,-I)+l.o 

\ k = 2  

n - -  l 

x ]-[ b~k_,.2k 10) (F.6) 
k = 2  

We change the labeling of the lattice sites by the rule j--* j - 2  and obtain 

G(n - -  1, 2m; a, r) 

I t  - -  2 \ 

= - -  d 0 [  Cl.  o ' C 2 ( m -  I 1 -  1, r f 2 l m -  1 ) -  1. rC2ln  - 2) + 1. ,'r 

n - -  2 

x FI b~,--,.2k I 0 )  
k=l 

= - G(n - 1, 2(m - 1 ); a, r) 

= ( - 1 )  m G ( n - m -  1, 2; a, r) 

n - -  m - -  1 \ 

~ v { ' 2 ( l l - - n ~  - I}+ l.O" 
I 

n - -  m - -  1 

• I - [  b ~ . _ , . ~ 1 0 )  
k = l  

= ( - l ) " ' ( 0 l  I-[ b~,zk+j  CI,~CI.~C,_~ . . . . . . .  1~+ 
k = l  

n - -  m - -  I 

x ]-[ b x _ , , ~ . I 0 )  
k = 2  
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I n  - -  m - -  I \ 

Q t c t ) = ( - l ) ' ( o l  1-[ b~.2~+, c , . , . c , . , b * , . , ~ ,  . . . . . .  ,,+,.o 2., 
k = |  

n - - m - -  1 

• 1-I b~_,.2,  I0) 
k=2 

= ( -  1)"' sgn(r)  5~ _~ (01 b ~  .~+l c21,,_.,_1~+ i . . . .  
l 

n - -  m - -  1 

k=2 

) =(-1)"'6~,. (0 l  b~.~_k+l C3 t. c t 
- - r  - - r  2 U l - - m - -  1 ) +  I , a  

\ k = 2  

n - -  m - -  1 

x l-I bX_,.~lO) 
k~2 

(F.7) 

We change the labeling of  the lattice sites by the rule k ---, k - 2 and obtain  

G(n - 1, 2m; a, r) 

; I  - -  m - -  2 \ 

=(-1)"'6,,._~(01 b~,2k+~ I,-~c2~ . . . .  -2)+1.,~ 
1 

i1 - -  I l l  - -  2 

• 1-I b~_,,2~lO> 
k = l  

= ( - 1 ) " ' 6 ~ , _ ~ L ( n - m - 2 ;  or, - r )  

= ( - 1 ) " 5 . _ . x ( - 1 )  . . . . . .  2 6 . . _ ~  

= ( - 1 ) " - ' 6  . . . .  (F.8) 

where we used (B.6). For  j = 2m - 1 a similar calculat ion leads to 

G(2m- 1; a, r)  = ( -  1) " - t  6,.~ (F.9) 

Combin ing  (F.8) and (F.9), we find for (F.5) 

t t t (01 b~.2k+~ c~.,,Cy.~C,,~cl.,, b2~_~.~ 10) = ( - 1 )  ' ' -~  ~.1-~1,,,.,...,~ 

1 k=l (F.10) 
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We obta in  the weight  

1 
w](x, y; a) =~  [G(n, y; a, a) + G(n, y; a, - a ) ]  

=(  _ 1 )/(.,- >,/2-1 6~, . ( - , )~ . , - . , . ) , ,+6 , , . (_ i )~ . , - . , . )+~, ,  
2 

( - I )1(.,-.>,)/z - )  

where we used the relation n = l(x, y)/2. 

(F.]t) 
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